To perform gas metal arc welding, the basic necessary equipment is a welding gun, a wire feed unit, a welding power supply, an electrode wire, and a shielding gas supply.
Most applications of gas metal arc welding use a constant voltage power supply
Alternating current is rarely used with GMAW; instead, direct current is employed and the electrode is generally positively charged(DCEP)
Electrode
The selection of electrode depends on the process variation being used, the composition of the metal being welded, the joint design, and the material surface conditions.
All electrode contain deoxidizing metals such as silicon, manganese, titanium, and aluminum in small percentages to help prevent oxygen porosity, and some contain denitriding metals such as titanium and zirconium to avoid nitrogen porosity.[9]
The diameters of the electrodes used in GMAW typically range from 0.7 to 2.4 mm (0.028–0.095 in), but can be as large as 4 mm (0.16 in). The smallest electrodes are associated with short-circuiting metal transfer, while the pulsed spray mode generally uses electrodes of at least 1.6 mm (0.06 in).[10]
Shielding gas
Shielding gases are necessary for gas metal arc welding to protect the welding area from atmospheric gases such as nitrogen and oxygen, which can cause fusion defects, porosity, and weld metal embrittlement if they come in contact with the electrode, the arc, or the welding metal. This problem is common to all arc welding processes, but instead of a shielding gas, many arc welding methods utilize a flux material which disintegrates into a protective gas when heated to welding temperatures. In GMAW, however, the electrode wire does not have a flux coating, and a separate shielding gas is employed to protect the weld. This eliminates slag, the hard residue from the flux that builds up after welding and must be chipped off to reveal the completed weld.
The choice of a shielding gas depends on several factors, most importantly the type of material being welded and the process variation being used. Pure inert gases such as argon and helium are only used for nonferrous welding; with steel they cause an erratic arc and encourage spatter (with helium) or do not provide adequate weld penetration (argon). Pure carbon dioxide, on the other hand, allows for deep penetration welds but encourages oxide formation, which adversely affect the mechanical properties of the weld. Its low cost makes it an attractive choice, but because of the violence of the arc, spatter is unavoidable and welding thin materials is difficult. As a result, argon and carbon dioxide are frequently mixed in a 75%/25% or 80%/20% mixture, which reduces spatter and makes it possible to weld thin steel workpieces.
Argon is also commonly mixed with other gases, such as oxygen, helium, hydrogen, and nitrogen. The addition of up to 5% oxygen encourages spray transfer, which is critical for spray-arc and pulsed spray-arc GMAW. However, more oxygen makes the shielding gas oxidize the electrode, which can lead to porosity in the deposit if the electrode does not contain sufficient deoxidizers. An argon-helium mixture is completely inert, and is used on nonferrous materials. A helium concentration of 50%–75% raises the voltage and increases the heat in the arc, making it helpful for welding thicker workpieces. Higher percentages of helium also improve the weld quality and speed of using alternating current for the welding of aluminum. Hydrogen is added to argon in small concentrations (up to about 5%) for welding nickel and thick stainless steel workpieces. In higher concentrations (up to 25% hydrogen), it is useful for welding conductive materials such as copper. However, it should not be used on steel, aluminum or magnesium because of the risk of hydrogen porosity. Additionally, nitrogen is sometimes added to argon to a concentration of 25%–50% for welding copper, but the use of nitrogen, especially in North America, is limited. Mixtures of carbon dioxide and oxygen are similarly rarely used in North America, but are more common in Europe and Japan.
Recent advances in shielding gas mixtures use three or more gases to gain improved weld quality. A mixture of 70% argon, 28% carbon dioxide and 2% oxygen is gaining in popularity for welding steels, while other mixtures add a small amount of helium to the argon-oxygen combination, resulting in higher arc voltage and welding speed. Helium is also sometimes used as the base gas, to which smaller amounts of argon and carbon dioxide are added. Additionally, other specialized and often proprietary gas mixtures claim to offer even greater benefits for specific applications.[11]
The desirable rate of gas flow depends primarily on weld geometry, speed, current, the type of gas, and the metal transfer mode being utilized. Welding flat surfaces requires higher flow than welding grooved materials, since the gas is dispersed more quickly. Faster welding speeds mean that more gas must be supplied to provide adequate coverage. Additionally, higher current requires greater flow, and generally, more helium is required to provide adequate coverage than argon. Perhaps most importantly, the four primary variations of GMAW have differing shielding gas flow requirements—for the small weld pools of the short circuiting and pulsed spray modes, about 10 L/min (20 ft³/h) is generally suitable, while for globular transfer, around 15 L/min (30 ft³/h) is preferred. The spray transfer variation normally requires more because of its higher heat input and thus larger weld pool; along the lines of 20–25 L/min (40–50 ft³/h).[12]
The orientation of the gun is also important—it should be held so as to bisect the angle between the work pieces; that is, at 45 degrees for a fillet weld and 90 degrees for welding a flat surface. The travel angle or lead angle is the angle of the torch with respect to the direction of travel, and it should generally remain approximately vertical. However, the desirable angle changes somewhat depending on the type of shielding gas used—with pure inert gases, the bottom of the torch is out often slightly in front of the upper section, while the opposite is true when the welding atmosphere is carbon dioxide.[14
SAFETY HAZARD S INCLUDE
Extreme heat and flame
Ultraviolet light
Particulate matter
Carbon monoxide
Ozone
GLOBULAR TRANSFER
As the weld is made, a ball of molten metal from the electrode tends to build up on the end of the electrode, often in irregular shapes with a larger diameter than the electrode itself. When the droplet finally detaches either by gravity or short circuiting, it falls to the workpiece, leaving an uneven surface and often causing spatter.
limited to flat and horizontal welding positions
tendency to produce high heat, a poor weld surface, and spatter.
uses carbon dioxide,
high deposition rate,
SHORT CIRCUIT TRANSFER
Molten droplets form on the tip of the electrode, but instead of dropping to the weld pool, they bridge the gap between the electrode and the weld pool as a result of the greater wire feed rate. This causes a short circuit and extinguishes the arc, but it is quickly reignited after the surface tension of the weld pool pulls the molten metal bead off the electrode tip.
This process is repeated about 100 times per second, making the arc appear constant to the human eye.
possible to weld thinner materials
better weld quality and less spatter than the globular variation, and it allows for welding in all positions but slower
SPRA Y TRANSFER :
Molten metal droplets (with diameters smaller than the electrode diameter) are rapidly passed along the stable electric arc from the electrode to the work piece
eliminating spatter and resulting in a high-quality weld finish.
high amounts of voltage and current are necessary
used only on workpieces of thicknesses above about 6 mm (0.25 in).
it is often limited to flat and horizontal welding position
The maximum deposition rate for spray arc GMAW is relatively high; about 60 mm/s (150 in/min).[22
PULSE TRANSFER
Based on the principles of spray transfer but uses a pulsing current to melt the filler wire and allow one small molten droplet to fall with each pulse.
The pulses allow the average current to be lower, decreasing the overall heat input and thereby decreasing the size of the weld pool and heat-affected zone while making it possible to weld thin work pieces
The smaller weld pool gives the variation greater versatility, making it possible to weld in all positions.
it requires a special power source capable of providing current pulses with a frequency between 30 and 400 pulses per second.
2009年7月30日 星期四
Turned Process
Turned part include :i) Bolt ,ii) Shafts ,iii) Spindle ,iv) Washer.
Three motion involved in Lathe turning are
The rotating motion of the work piece is called ‘Cutting or main motion’. The speed at which the material is removed from work piece by the cutting edge is called ‘cutting speed’
The cutting tool moves forward at a uniform rate forming a continuous chip (Feed motion)
The turning tool is set to desire depth of cut( Adjusting motion)
STRAIGHT TURNING -The work pieces are given cylindrical shape by straight turning , in which cutting tool move parallel to the axis of the turning spindle.
FACING The work pieces are given plane surface by facing , in which cutting tool move perpendicular to the axis of the turning spindle.
TAPER TURNING:The work pieces are given taper shape by taper turning operation , in which cutting tool move at angle to the axis of the turning spindle.
Center lathe , engine lathe and longitudinal turning lathes are used interchangeably
HEAD STOCK In the head stock (Picture) the main spindle on the bearings transmit the rotary motion to the work piece.
In most cases spindles are hollow so as to guide the bar stock through
Bearing :plain bearing , thrust bearing , ball and roller bearing
Head of spindle is provided with a thread to fix chuck and also provided with tapered hole to accommodate centers
Spindle is driven by motor through gear train
CARRIAGE :Supports and carries cutting tool
Contains feed mechanism and its adjustment
Consists of saddle , cross slide , compound slide , tool holder and apron.
The saddle and the cross slide are either operated by feed shaft or the leadscrew
TAILSTOCK:Serves as a support for turning long work piece
Provided with MORSE taper to accommodate
center , twist drill, boring tool ,reamer
Tail stock can be offset for taper turning
BED :Carries all lathe parts
The carriage and tailstock move on the guide way which are usually V and flat shaped.
Turning tool can be made of unalloyed tool steel, alloy tool steel, cemented carbide and diamond tip
Shank serves the purpose of clamping
Tool point consists of cutting edges
Cut face is the surface on the work piece which is formed by the cutting edge of the tool
The machined surface is the surface of the work piece obtained by the cutting process
The top face is the surface on which the chip curls .
The clearance face is the surface of the tool point, directed against the cut face.
The clearance angle is the angle between top face and clearance face
The rake angle is the angle between normal of the cut face and the top face
Clearance ,wedge and rake angle add up to 90 degree
The primary cutting edge is the cutting edge on the feed side
The secondary cutting edge is the cutting edge subsequent to the primary cutting edge
The Plan angle is situated between the primary cutting edge and machine surface. When turning with large plan angle the thickness of the chip is small , the cutting pressure is ditributed on a short portion of the cutting edge , tool life shortened and vice versa.
The nose angle is enclosed between primary cutting edge and secondary cutting edge tool with small nose angle blunt quickly.
The inclination angle determine the position of the primary cutting edge towards the horizontal line
Type of cutting tool include roughing tool , finishing tool and side tools
Toolpost include ordinary tool post and four way tool post.
Cutting tools should be set at center to obtain optimun results .
Cutting Speed =22/7 *RPM *D cirmeferential length of chip cut in one minute , depends on 1) Work piece material,2) Cutting tool materials,3) Cross section of the chip , 4)Cooling ,5) Machine Design
Feed means longitidunal distance travel for one full turning of work piece
Depth of cut means amount of penetration into the work piece to obtain a desired size.
A Typical operation plan sequence for manufacturing of bolt are
1) Chucking
2)Roughing and finishing of 1st step
3)Turning to length and deburing of 1st step
4)Rechucking
5)Roughing , finishing , turning to length and deburring of 2nd step
Three motion involved in Lathe turning are
The rotating motion of the work piece is called ‘Cutting or main motion’. The speed at which the material is removed from work piece by the cutting edge is called ‘cutting speed’
The cutting tool moves forward at a uniform rate forming a continuous chip (Feed motion)
The turning tool is set to desire depth of cut( Adjusting motion)
STRAIGHT TURNING -The work pieces are given cylindrical shape by straight turning , in which cutting tool move parallel to the axis of the turning spindle.
FACING The work pieces are given plane surface by facing , in which cutting tool move perpendicular to the axis of the turning spindle.
TAPER TURNING:The work pieces are given taper shape by taper turning operation , in which cutting tool move at angle to the axis of the turning spindle.
Center lathe , engine lathe and longitudinal turning lathes are used interchangeably
HEAD STOCK In the head stock (Picture) the main spindle on the bearings transmit the rotary motion to the work piece.
In most cases spindles are hollow so as to guide the bar stock through
Bearing :plain bearing , thrust bearing , ball and roller bearing
Head of spindle is provided with a thread to fix chuck and also provided with tapered hole to accommodate centers
Spindle is driven by motor through gear train
CARRIAGE :Supports and carries cutting tool
Contains feed mechanism and its adjustment
Consists of saddle , cross slide , compound slide , tool holder and apron.
The saddle and the cross slide are either operated by feed shaft or the leadscrew
TAILSTOCK:Serves as a support for turning long work piece
Provided with MORSE taper to accommodate
center , twist drill, boring tool ,reamer
Tail stock can be offset for taper turning
BED :Carries all lathe parts
The carriage and tailstock move on the guide way which are usually V and flat shaped.
Turning tool can be made of unalloyed tool steel, alloy tool steel, cemented carbide and diamond tip
Shank serves the purpose of clamping
Tool point consists of cutting edges
Cut face is the surface on the work piece which is formed by the cutting edge of the tool
The machined surface is the surface of the work piece obtained by the cutting process
The top face is the surface on which the chip curls .
The clearance face is the surface of the tool point, directed against the cut face.
The clearance angle is the angle between top face and clearance face
The rake angle is the angle between normal of the cut face and the top face
Clearance ,wedge and rake angle add up to 90 degree
The primary cutting edge is the cutting edge on the feed side
The secondary cutting edge is the cutting edge subsequent to the primary cutting edge
The Plan angle is situated between the primary cutting edge and machine surface. When turning with large plan angle the thickness of the chip is small , the cutting pressure is ditributed on a short portion of the cutting edge , tool life shortened and vice versa.
The nose angle is enclosed between primary cutting edge and secondary cutting edge tool with small nose angle blunt quickly.
The inclination angle determine the position of the primary cutting edge towards the horizontal line
Type of cutting tool include roughing tool , finishing tool and side tools
Toolpost include ordinary tool post and four way tool post.
Cutting tools should be set at center to obtain optimun results .
Cutting Speed =22/7 *RPM *D cirmeferential length of chip cut in one minute , depends on 1) Work piece material,2) Cutting tool materials,3) Cross section of the chip , 4)Cooling ,5) Machine Design
Feed means longitidunal distance travel for one full turning of work piece
Depth of cut means amount of penetration into the work piece to obtain a desired size.
A Typical operation plan sequence for manufacturing of bolt are
1) Chucking
2)Roughing and finishing of 1st step
3)Turning to length and deburing of 1st step
4)Rechucking
5)Roughing , finishing , turning to length and deburring of 2nd step
教育是要培养健全人格
http://www.nanyang.com/index.php?ch=29&pg=26&ac=984272
南洋言论 -
教育视窗: 教育是要培养健全人格 2009/07/30 17:58:18
●吴和豪
据报道,教育部将削减学校3个科目,即音乐、体育及科学节数,以增加英文学习时间。
本人不十分同意这种的做法,因为教育本来的目的就是要培养每一个人成为有健全人格的人。我小学就读于槟城的辅友小学,还记得辅友小学的校歌的一段里有提及三语并重,四育同修;三语并重就是注重中文,国文及英文,而四育同修就是蔡元培教育论集里提及的体育、智育、德育和美育。这四育是一样重要,不可放松一项。因此我们不能为了达到特定的学术指标, 而忽视了学童们其他方面的发展,而使到国家社会不能取得全面及均衡的发展。
通过歌唱教导语文
我本身的看法是与其削减音乐、体育及科学节数,不如用创意的方法把这些科目与英语教学结合而达到一石二鸟的功能。以我本身教日语的经验来谈,如果处理得好,通过歌唱来教导语文不但能制造更轻松的学习环境,同时,也能提高学员对语文学习的兴趣。
世界日益进步,科技不断变化,而世界各地教育制度及方法也不断地演变。为了使到我国的教育制度系统能不断改进及提升我国作为国际性的教育中心,我国也有需要向其他国家如印度及瑞士学习,学习这些国界在保留自己的传统语言同时,也能够有效提高学生的英文应用能力。
在制定教育制度的时候,我们必须考量每个学生有不同的质量及智能。据哈佛卡尔纳博士(Howard Gardner)的理论,每个身心正常的人都有8种的智能。这8种智能包括了言语智能、音乐智能、数学逻辑智能、空间观想智能、体力智能、交际智能、个人领悟的智能及与大自然沟通的智能。每个人都有这8种的智能,但强弱的程度依个人的成长环境而不同。
如果能够以这原理来掌握学生的学习习惯及态度,学校的老师就可以依学生的本性制定适合的方法教导学生。从古到今,教育的目的是一样的,今天我们提及全面及均衡的发展,而以前圣贤们也需要精通四书,五经及六艺。总而言之,教育本来的目的就是要培养每一个人成为有健全人格的人。
南洋言论 -
教育视窗: 教育是要培养健全人格 2009/07/30 17:58:18
●吴和豪
据报道,教育部将削减学校3个科目,即音乐、体育及科学节数,以增加英文学习时间。
本人不十分同意这种的做法,因为教育本来的目的就是要培养每一个人成为有健全人格的人。我小学就读于槟城的辅友小学,还记得辅友小学的校歌的一段里有提及三语并重,四育同修;三语并重就是注重中文,国文及英文,而四育同修就是蔡元培教育论集里提及的体育、智育、德育和美育。这四育是一样重要,不可放松一项。因此我们不能为了达到特定的学术指标, 而忽视了学童们其他方面的发展,而使到国家社会不能取得全面及均衡的发展。
通过歌唱教导语文
我本身的看法是与其削减音乐、体育及科学节数,不如用创意的方法把这些科目与英语教学结合而达到一石二鸟的功能。以我本身教日语的经验来谈,如果处理得好,通过歌唱来教导语文不但能制造更轻松的学习环境,同时,也能提高学员对语文学习的兴趣。
世界日益进步,科技不断变化,而世界各地教育制度及方法也不断地演变。为了使到我国的教育制度系统能不断改进及提升我国作为国际性的教育中心,我国也有需要向其他国家如印度及瑞士学习,学习这些国界在保留自己的传统语言同时,也能够有效提高学生的英文应用能力。
在制定教育制度的时候,我们必须考量每个学生有不同的质量及智能。据哈佛卡尔纳博士(Howard Gardner)的理论,每个身心正常的人都有8种的智能。这8种智能包括了言语智能、音乐智能、数学逻辑智能、空间观想智能、体力智能、交际智能、个人领悟的智能及与大自然沟通的智能。每个人都有这8种的智能,但强弱的程度依个人的成长环境而不同。
如果能够以这原理来掌握学生的学习习惯及态度,学校的老师就可以依学生的本性制定适合的方法教导学生。从古到今,教育的目的是一样的,今天我们提及全面及均衡的发展,而以前圣贤们也需要精通四书,五经及六艺。总而言之,教育本来的目的就是要培养每一个人成为有健全人格的人。
Skim subsidi kerajaan wujudkan kestabilan
http://www.bharian.com.my/klikkhas/pilihanraya/Berita/Rencana/20080218150316/Article/indexrencana_html
Skim subsidi kerajaan wujudkan kestabilan
Oleh Goh Hoe Hoe
ISU subsidi dan negara kebajikan dibangkitkan pihak pembangkang. Namun, dalam sebuah negara majmuk seperti Malaysia, perkara ini perlu difahami dan tidak dipesong oleh pihak yang cuba menjadi juara.
Mengikut laporan akhbar 26 Januari lalu, Setiausaha Agung DAP, Lim Guan Eng antara lain dipetik sebagai berkata bahawa cara paling baik untuk mengurangkan beban rakyat adalah dengan memberikan bantuan wang sebanyak RM6,000 kepada keluarga berpendapatan kurang RM6,000 setahun dan RM3,000 bagi individu berpendapatan kurang RM3,000 setahun.
Pada pendapat saya, cadangan itu tidak praktikal dan tidak sesuai dengan budaya orang Malaysia. Cadangan Lim lebih kurang serupa dengan skim bantuan pengangguran yang diamalkan di negara Barat.
Skim itu jika dilaksanakan di Malaysia, akan membawa kesan sangat buruk. Ia akan menghasilkan orang yang malas bekerja dan tidak berusaha, seterusnya merendahkan kadar pengeluaran negara dan kemampuan bagi negara untuk bersaing, akhirnya akan mewujudkan kemelesetan ekonomi di negara kita.
Lim juga membuat ulasan bahawa subsidi yang diberi oleh kerajaan ke atas barang keperluan utama tidak berguna. Adakah ini satu pandangan yang melampau? Skim subsidi ke atas barang keperluan utama bukan saja diamalkan di negara kita, malah juga diamalkan oleh negara maju seperti Jepun.
Di Jepun, subsidi yang diberikan oleh kerajaan Jepun ke atas beras adalah jauh lebih tinggi daripada harga pasaran beras, iaitu kira-kira 20 kali ganda. Tetapi langkah ini tidak menjejaskan prestasi ekonomi Jepun, sebaliknya memberi kesan baik dalam membentuk masyarakat yang stabil di Jepun.
Apabila pihak pentadbir menjalankan pentadbiran, mereka bukan saja mesti mengambil kira kos perakaunan dan kos pengeluaran, malah harus juga memberikan keutamaan terhadap kestabilan masyarakat, keperluan rakyat dan kemampuan bagi negara kita untuk bersaing pada masa depan.
Tujuan utama Kerajaan Malaysia memberikan subsidi ke atas barang dan perkhidmatan utama ialah untuk memastikan semua orang, yang tua dan muda, cukup makan dan hidup selesa.
Ini bagi membolehkan orang dewasa dapat menumpukan perhatian kepada pekerjaan mereka dan seterusnya memberi sumbangan kepada perkembangan ekonomi negara, supaya anak kita dapat menumpukan perhatian kepada pelajaran mereka.
Ini seterusnya menjadi mereka golongan yang dapat bersaing pada masa depan dan memberikan sumbangan mereka kepada perkembangan ekonomi negara.
Skim subsidi bukan saja baik untuk pengguna, malah untuk peniaga kerana dengan wujudnya skim subsidi, kuasa membeli pengguna dapat dikekal, perniagaan maju dan hasil cukai pendapatan kerajaan dapat juga dikekalkan.
Oleh itu, langkah kerajaan memberikan subsidi yang berpatutan adalah satu langkah bijak untuk memastikan kestabilan masyarakat dan perkembangan ekonomi.
Dalam pentadbiran negara, kita boleh meniru piawaian yang ditetapkan oleh negara Barat, sistem demokratik yang berasal dari Yunani (Greek) dan mekanisme pasaran bebas atau hukum pengagihan semula yang dicadangkan oleh Karl Marx.
Sebaliknya kita juga mesti mengikut cara Timur seperti sikap kesederhanaan dan konsep masyarakat yang bersatu padu yang diajar oleh Confucious.
Masyarakat bersatu padu adalah satu konsep yang disebutkan oleh Confucious, ahli falsafah handal bangsa China dalam bukunya bertajuk Rakaman Istiadat. Confucious berpendapat untuk mewujudkan satu masyarakat yang aman dan progresif, pentadbir mesti memberikan keutamaan kepada kebajikan rakyat.
Pegawai kerajaan mestilah terdiri daripada golongan berilmu, berkebolehan dan berbudi pekerti. Pegawai kerajaan mesti ikhlas untuk membentuk satu masyarakat berbilang budaya yang harmoni.
Dalam satu masyarakat yang ditadbir dengan sempurna, orang tua meneruskan perjalanan hidup mereka sampai titik akhir penuh dengan maruah dan kegembiraan, orang dewasa yang sihat diberi peluang untuk bekerja dan menunjukkan kebolehan mereka, manakala anak diasuh dan dididik dengan baik.
Orang yang kurang bernasib dan kurang berkeupayaan pula diberi jagaan. Setiap orang diberikan tugas dan dihormati, setiap keluarga hidup dengan sejahtera. Tidak ada orang yang suka membazirkan sumber pengeluaran dan juga tidak ada orang yang mahu menyorok sumber pengeluaran untuk mencari kekayaan.
Tidak ada orang yang enggan berusaha dan tidak ada orang yang berusaha semata mata untuk kepentingan diri sendiri saja.
Masyarakat yang mempunyai ciri itu, digelar sebagai masyarakat yang bersatu padu. Kerajaan menunjukkan pencapaian yang baik dalam usaha untuk mempertingkatkan taraf hidup rakyat , mewujud masyarakat yang aman dan maju.
Skim subsidi kerajaan wujudkan kestabilan
Oleh Goh Hoe Hoe
ISU subsidi dan negara kebajikan dibangkitkan pihak pembangkang. Namun, dalam sebuah negara majmuk seperti Malaysia, perkara ini perlu difahami dan tidak dipesong oleh pihak yang cuba menjadi juara.
Mengikut laporan akhbar 26 Januari lalu, Setiausaha Agung DAP, Lim Guan Eng antara lain dipetik sebagai berkata bahawa cara paling baik untuk mengurangkan beban rakyat adalah dengan memberikan bantuan wang sebanyak RM6,000 kepada keluarga berpendapatan kurang RM6,000 setahun dan RM3,000 bagi individu berpendapatan kurang RM3,000 setahun.
Pada pendapat saya, cadangan itu tidak praktikal dan tidak sesuai dengan budaya orang Malaysia. Cadangan Lim lebih kurang serupa dengan skim bantuan pengangguran yang diamalkan di negara Barat.
Skim itu jika dilaksanakan di Malaysia, akan membawa kesan sangat buruk. Ia akan menghasilkan orang yang malas bekerja dan tidak berusaha, seterusnya merendahkan kadar pengeluaran negara dan kemampuan bagi negara untuk bersaing, akhirnya akan mewujudkan kemelesetan ekonomi di negara kita.
Lim juga membuat ulasan bahawa subsidi yang diberi oleh kerajaan ke atas barang keperluan utama tidak berguna. Adakah ini satu pandangan yang melampau? Skim subsidi ke atas barang keperluan utama bukan saja diamalkan di negara kita, malah juga diamalkan oleh negara maju seperti Jepun.
Di Jepun, subsidi yang diberikan oleh kerajaan Jepun ke atas beras adalah jauh lebih tinggi daripada harga pasaran beras, iaitu kira-kira 20 kali ganda. Tetapi langkah ini tidak menjejaskan prestasi ekonomi Jepun, sebaliknya memberi kesan baik dalam membentuk masyarakat yang stabil di Jepun.
Apabila pihak pentadbir menjalankan pentadbiran, mereka bukan saja mesti mengambil kira kos perakaunan dan kos pengeluaran, malah harus juga memberikan keutamaan terhadap kestabilan masyarakat, keperluan rakyat dan kemampuan bagi negara kita untuk bersaing pada masa depan.
Tujuan utama Kerajaan Malaysia memberikan subsidi ke atas barang dan perkhidmatan utama ialah untuk memastikan semua orang, yang tua dan muda, cukup makan dan hidup selesa.
Ini bagi membolehkan orang dewasa dapat menumpukan perhatian kepada pekerjaan mereka dan seterusnya memberi sumbangan kepada perkembangan ekonomi negara, supaya anak kita dapat menumpukan perhatian kepada pelajaran mereka.
Ini seterusnya menjadi mereka golongan yang dapat bersaing pada masa depan dan memberikan sumbangan mereka kepada perkembangan ekonomi negara.
Skim subsidi bukan saja baik untuk pengguna, malah untuk peniaga kerana dengan wujudnya skim subsidi, kuasa membeli pengguna dapat dikekal, perniagaan maju dan hasil cukai pendapatan kerajaan dapat juga dikekalkan.
Oleh itu, langkah kerajaan memberikan subsidi yang berpatutan adalah satu langkah bijak untuk memastikan kestabilan masyarakat dan perkembangan ekonomi.
Dalam pentadbiran negara, kita boleh meniru piawaian yang ditetapkan oleh negara Barat, sistem demokratik yang berasal dari Yunani (Greek) dan mekanisme pasaran bebas atau hukum pengagihan semula yang dicadangkan oleh Karl Marx.
Sebaliknya kita juga mesti mengikut cara Timur seperti sikap kesederhanaan dan konsep masyarakat yang bersatu padu yang diajar oleh Confucious.
Masyarakat bersatu padu adalah satu konsep yang disebutkan oleh Confucious, ahli falsafah handal bangsa China dalam bukunya bertajuk Rakaman Istiadat. Confucious berpendapat untuk mewujudkan satu masyarakat yang aman dan progresif, pentadbir mesti memberikan keutamaan kepada kebajikan rakyat.
Pegawai kerajaan mestilah terdiri daripada golongan berilmu, berkebolehan dan berbudi pekerti. Pegawai kerajaan mesti ikhlas untuk membentuk satu masyarakat berbilang budaya yang harmoni.
Dalam satu masyarakat yang ditadbir dengan sempurna, orang tua meneruskan perjalanan hidup mereka sampai titik akhir penuh dengan maruah dan kegembiraan, orang dewasa yang sihat diberi peluang untuk bekerja dan menunjukkan kebolehan mereka, manakala anak diasuh dan dididik dengan baik.
Orang yang kurang bernasib dan kurang berkeupayaan pula diberi jagaan. Setiap orang diberikan tugas dan dihormati, setiap keluarga hidup dengan sejahtera. Tidak ada orang yang suka membazirkan sumber pengeluaran dan juga tidak ada orang yang mahu menyorok sumber pengeluaran untuk mencari kekayaan.
Tidak ada orang yang enggan berusaha dan tidak ada orang yang berusaha semata mata untuk kepentingan diri sendiri saja.
Masyarakat yang mempunyai ciri itu, digelar sebagai masyarakat yang bersatu padu. Kerajaan menunjukkan pencapaian yang baik dalam usaha untuk mempertingkatkan taraf hidup rakyat , mewujud masyarakat yang aman dan maju.
Hidupkan teknologi hijau sebagai industri strategik
http://www.bharian.com.my/Friday/Rencana/20090730231809/Article/index_html
'TEKNOLOGI hijau' bukan frasa baru dalam konteks pembangunan teknologi dan inovasi. Pada hemat saya, ada tiga komponen penting memastikan tahap 'kehijauan' sesuatu teknologi, iaitu kesan kepada alam sekitar, manfaat kepada pengguna dan pemangkin kehidupan lestari. Kesan kepada alam sekitar boleh ditentukan menerusi kaedah analisis kitar hayat (LCA) atau pengiraan tapak ekologi.
Manfaat kepada pengguna pula membabitkan bukan saja pengurangan kos modal dan operasi, malah turut membabitkan peningkatan keselamatan, kemudahan dari segi penggunaan dan praktikal. Misalnya 'kereta hijau' seharusnya murah dan menjimatkan dari segi bahan api. Selain itu, reka bentuk kereta itu mestilah lebih selamat, menarik dan tidak sukar dipandu.
Teknologi hijau juga pemangkin kehidupan lestari. Justeru, teknologi hijau perlu direkabentuk untuk menyubur minda lestari, kehidupan mesra alam, mengurang pembaziran, menyemarak budaya, mementing agama dan memugar ekosistem.
Sebagai contoh pakaian, 'pakaian hijau' bukan saja dihasil menerusi bahan mentah dan proses pembikinan mesra alam, malah perlu disesuaikan dengan iklim setempat (misalnya tidak tebal bagi pengguna di kawasan beriklim panas supaya tidak memerlukan pendingin hawa), fesyen tidak mencolok mata atau mendedahkan aurat.
Semua aspek ini mendefinisikan 'teknologi hijau' bukan saja dari segi kaedah dan alat pembikinan sesuatu produk atau perkhidmatan, malah cara hidup lestari. Teknologi hijau semakin diperlukan bagi menangani keperluan setempat seperti pengurangan tahap pencemaran dalam sektor perkhidmatan air dan penjanaan tenaga lestari.
Malah teknologi hijau juga boleh dibangunkan sebagai industri strategik seperti dimulakan Jerman dan Jepun sejak 1990-an. Disebabkan teknologi hijau ialah suatu konsep berkaitan ciri teknologi dan idealisme lestari, maka penggunaannya meluas dalam seluruh sektor.
Ketika ini, konsep 'ICT hijau', 'bandar lestari', 'korporat hijau' dan 'kerajaan lestari' semakin berkembang daripada perkakasan, sistem perolehan, peraturan, tata cara sehingga kerangka dasar dan budaya kerja.
Sebagai contoh antara komponen penting dalam sesebuah kerajaan lestari ialah sistem perolehan memberi keutamaan kepada barang, perkhidmatan, proses dan hasil mesra alam. Dalam konteks pembinaan infrastruktur baru misalnya, tumpuan tidak hanya kepada penyediaan bangunan atau kelengkapan, tetapi turut membabitkan konsep, kaedah dan barang binaan, penggunaan tenaga dan utiliti lain dan budaya lestari di kalangan penghuni bangunan terbabit.
Dengan harga minyak masih tidak menentu dan kegusaran terhadap kesan peningkatan suhu bumi, maka peranan teknologi hijau dijangka lebih mendesak dan kritikal. Pada hemat saya, itulah antara faktor utama Perdana Menteri, Datuk Seri Najib Razak menubuhkan Kementerian Tenaga, Teknologi Hijau dan Air (KeTTHA).
Ketika melancarkan Dasar Teknologi Hijau Negara (DTHN) pada 24 Julai lalu, Najib menegaskan bahawa teknologi hijau akan dibangunkan sebagai pemacu pertumbuhan ekonomi negara ke arah pembangunan lestari.
Sehubungan itu, empat tonggak DTHN digariskan iaitu mencari ketidakbergantungan tenaga dan promosi kecekapan tenaga, melestarikan alam sekitar, meningkatkan pembangunan ekonomi negara melalui penggunaan teknologi hijau dan meningkatkan kualiti hidup masyarakat.
Antara objektif DTHN ialah untuk meningkatkan keupayaan bagi inovasi dalam pembangunan dan daya saing teknologi hijau pada persada antarabangsa. Ketika ini memang banyak inovasi dilaksanakan, khususnya dalam teknologi berkaitan rawatan air dan air sisa secara lebih lestari dan kreatif.
Memang teknologi itu diperlukan dalam situasi kualiti dan kuantiti sumber air semakin terjejas. Malah pasaran teknologi itu cukup besar. Di negara maju, tumpuan adalah untuk membaikpulih kemudahan sedia ada dan meningkatkan keberkesanannya. Ini termasuk dalam sektor bekalan air, pembetungan, pengurusan air industri dan sistem kejuruteraan, misalnya dalam kabin kapal terbang dan kapal laut.
Di negara membangun pula, teknologi air lestari diperlukan untuk menyediakan kemudahan kepada penduduk yang masih belum menikmati kemudahan bekalan air dan pembetungan. Menurut data Pertubuhan Bangsa-Bangsa Bersatu (PBB) pada 2002, bilangan penduduk di negara membangun tidak mendapat kemudahan bekalan air bersih ialah 1.1 bilion dan 2.4 bilion pembetungan.
Daripada jumlah itu, benua Asia paling ketara dengan 65 peratus penduduk masih belum mendapat bekalan air bersih dan 80 peratus kemudahan pembetungan, berbanding Afrika 27 peratus (bekalan air) dan 65 peratus (pembetungan).
Asasnya sudah tersedia, iaitu DTHN. Matlamat sudah dizahirkan. Malah laluan sudah ditunjuk. Maka usaha perlu dipergiatkan untuk membolehkan penggunaan dan penjanaan teknologi hijau subur di Malaysia.
Seperti kata Najib, 'impian saya adalah supaya suatu hari nanti kita boleh hidup dalam persekitaran bersih, sihat dan berkualiti tinggi, yang semua bandar, perbandaran dan komuniti dibina berasaskan konsep teknologi hijau.'
Profesor Datuk Zaini Ujang ialah Naib Canselor Universiti Teknologi Malaysia (UTM) dan Pengerusi Majlis Kualiti Alam Sekeliling Malaysia
'TEKNOLOGI hijau' bukan frasa baru dalam konteks pembangunan teknologi dan inovasi. Pada hemat saya, ada tiga komponen penting memastikan tahap 'kehijauan' sesuatu teknologi, iaitu kesan kepada alam sekitar, manfaat kepada pengguna dan pemangkin kehidupan lestari. Kesan kepada alam sekitar boleh ditentukan menerusi kaedah analisis kitar hayat (LCA) atau pengiraan tapak ekologi.
Manfaat kepada pengguna pula membabitkan bukan saja pengurangan kos modal dan operasi, malah turut membabitkan peningkatan keselamatan, kemudahan dari segi penggunaan dan praktikal. Misalnya 'kereta hijau' seharusnya murah dan menjimatkan dari segi bahan api. Selain itu, reka bentuk kereta itu mestilah lebih selamat, menarik dan tidak sukar dipandu.
Teknologi hijau juga pemangkin kehidupan lestari. Justeru, teknologi hijau perlu direkabentuk untuk menyubur minda lestari, kehidupan mesra alam, mengurang pembaziran, menyemarak budaya, mementing agama dan memugar ekosistem.
Sebagai contoh pakaian, 'pakaian hijau' bukan saja dihasil menerusi bahan mentah dan proses pembikinan mesra alam, malah perlu disesuaikan dengan iklim setempat (misalnya tidak tebal bagi pengguna di kawasan beriklim panas supaya tidak memerlukan pendingin hawa), fesyen tidak mencolok mata atau mendedahkan aurat.
Semua aspek ini mendefinisikan 'teknologi hijau' bukan saja dari segi kaedah dan alat pembikinan sesuatu produk atau perkhidmatan, malah cara hidup lestari. Teknologi hijau semakin diperlukan bagi menangani keperluan setempat seperti pengurangan tahap pencemaran dalam sektor perkhidmatan air dan penjanaan tenaga lestari.
Malah teknologi hijau juga boleh dibangunkan sebagai industri strategik seperti dimulakan Jerman dan Jepun sejak 1990-an. Disebabkan teknologi hijau ialah suatu konsep berkaitan ciri teknologi dan idealisme lestari, maka penggunaannya meluas dalam seluruh sektor.
Ketika ini, konsep 'ICT hijau', 'bandar lestari', 'korporat hijau' dan 'kerajaan lestari' semakin berkembang daripada perkakasan, sistem perolehan, peraturan, tata cara sehingga kerangka dasar dan budaya kerja.
Sebagai contoh antara komponen penting dalam sesebuah kerajaan lestari ialah sistem perolehan memberi keutamaan kepada barang, perkhidmatan, proses dan hasil mesra alam. Dalam konteks pembinaan infrastruktur baru misalnya, tumpuan tidak hanya kepada penyediaan bangunan atau kelengkapan, tetapi turut membabitkan konsep, kaedah dan barang binaan, penggunaan tenaga dan utiliti lain dan budaya lestari di kalangan penghuni bangunan terbabit.
Dengan harga minyak masih tidak menentu dan kegusaran terhadap kesan peningkatan suhu bumi, maka peranan teknologi hijau dijangka lebih mendesak dan kritikal. Pada hemat saya, itulah antara faktor utama Perdana Menteri, Datuk Seri Najib Razak menubuhkan Kementerian Tenaga, Teknologi Hijau dan Air (KeTTHA).
Ketika melancarkan Dasar Teknologi Hijau Negara (DTHN) pada 24 Julai lalu, Najib menegaskan bahawa teknologi hijau akan dibangunkan sebagai pemacu pertumbuhan ekonomi negara ke arah pembangunan lestari.
Sehubungan itu, empat tonggak DTHN digariskan iaitu mencari ketidakbergantungan tenaga dan promosi kecekapan tenaga, melestarikan alam sekitar, meningkatkan pembangunan ekonomi negara melalui penggunaan teknologi hijau dan meningkatkan kualiti hidup masyarakat.
Antara objektif DTHN ialah untuk meningkatkan keupayaan bagi inovasi dalam pembangunan dan daya saing teknologi hijau pada persada antarabangsa. Ketika ini memang banyak inovasi dilaksanakan, khususnya dalam teknologi berkaitan rawatan air dan air sisa secara lebih lestari dan kreatif.
Memang teknologi itu diperlukan dalam situasi kualiti dan kuantiti sumber air semakin terjejas. Malah pasaran teknologi itu cukup besar. Di negara maju, tumpuan adalah untuk membaikpulih kemudahan sedia ada dan meningkatkan keberkesanannya. Ini termasuk dalam sektor bekalan air, pembetungan, pengurusan air industri dan sistem kejuruteraan, misalnya dalam kabin kapal terbang dan kapal laut.
Di negara membangun pula, teknologi air lestari diperlukan untuk menyediakan kemudahan kepada penduduk yang masih belum menikmati kemudahan bekalan air dan pembetungan. Menurut data Pertubuhan Bangsa-Bangsa Bersatu (PBB) pada 2002, bilangan penduduk di negara membangun tidak mendapat kemudahan bekalan air bersih ialah 1.1 bilion dan 2.4 bilion pembetungan.
Daripada jumlah itu, benua Asia paling ketara dengan 65 peratus penduduk masih belum mendapat bekalan air bersih dan 80 peratus kemudahan pembetungan, berbanding Afrika 27 peratus (bekalan air) dan 65 peratus (pembetungan).
Asasnya sudah tersedia, iaitu DTHN. Matlamat sudah dizahirkan. Malah laluan sudah ditunjuk. Maka usaha perlu dipergiatkan untuk membolehkan penggunaan dan penjanaan teknologi hijau subur di Malaysia.
Seperti kata Najib, 'impian saya adalah supaya suatu hari nanti kita boleh hidup dalam persekitaran bersih, sihat dan berkualiti tinggi, yang semua bandar, perbandaran dan komuniti dibina berasaskan konsep teknologi hijau.'
Profesor Datuk Zaini Ujang ialah Naib Canselor Universiti Teknologi Malaysia (UTM) dan Pengerusi Majlis Kualiti Alam Sekeliling Malaysia
BHOPAL GAS TRAGEDYhttp://www.irastimes.org/bhopal_gas_tragedy.htm
BHOPAL GAS TRAGEDY
Eighteen years have gone by since the Bhopal Gas tragedy. The victims of the biggest industrial accident are yet to receive succour. “The Bhopal Gas Tragedy “ has been lost in the collective consciousness of the nation. Yes, life has to go on - we must light candles and offer prayers for the victims of September, 11 2001 - but do spare a thought for those who lost their lives in their devotion to duty.
I am talking of the “unhonoured,” “unwept” and “unsung” railwaymen who stood like “boys on the burning deck” and kept the wheels of Indian Railways turning.
Third of December 1984 dawned like any other day at Bhusaval Junction the heart of Central Railway operations. It was a pleasant bracing winter morning and it was “…business as usual….” The 00-00 hours to 08-00 hours shift in the Control Office was busy tying up the loose ends of the previous day’s operations and gathering information to plan the day’s work. The telephone lines were buzzing from different directions and all the ‘control boards’ were busy like the proverbial beehives. North bound trains towards Itarsi Junction, South bound trains towards Mumbai, West bound trains towards Surat and East bound trains towards Nagpur marked their progress on the control charts.
But wait! the Itarsi line was fading. Those were the days when railway communication was mainly through the overhead telegraph wires. Optic Fibre Cable was still in its infancy. It was the pre Sam-Pitroda days and telephone instruments were a luxury. There were no STD facilities and what was called a “lighting call” took a couple of hours to materialise!
At first the Bhusaval Control Office shrugged off the lack of communication with Itarsi as routine, but when the silence continued it was disquieting. The railways still had their more than 100 years old MORSE instruments functioning and there was a class of railwaymen which is extinct now called ‘Signallers’ who used the DOT-DASH-DOT method to raise Bhopal. Finally the headquarters control office at Mumbai confirmed that there was something seriously amiss at Bhopal which in those days was an area controlled from the Jhansi Railway Divisional Office. Communication to Bhopal was via Itarsi.
By about 6-00 a.m it was evident that a disaster had struck Bhopal. No trains were leaving Bhopal and those which entered just seemed to have disappeared into a ‘black hole’ till the yard was full and no more trains could be admitted.
The initial reports were almost flippant – “…. some evil fairy has struck and sleeping sickness has overtaken Bhopal….” Wild rumours started spreading. In the aftermath of the 1984 riots the militant Sikh organisations were blamed for everything.
Black 3rd December brought the news that people had been dropping dead like flies in Bhopal and those who could manage were scrambling into trains which were running away from Bhopal. There was a mass exodus with the Government functionaries abandoning Bhopal and commandeering whatever vehicles were available.
As the next shift railway workers streamed in at Bhopal they saw the horrifying sight of their colleagues slumped over at the workspot. Signalmen and Stationmasters in the busy NISHATPURA yard which was the epicentre of the gas leak had collapsed with the signal levers still in their hands. Since the signals did not turn green the engine drivers, died in their cabs dutifully waiting for the signals. Clerks at the booking windows had keeled over with the ticket boxes and the cash safe wide open. The only redeeming feature was that the deadly gas had struck without fear or favour and even thieves dare not enter Bhopal!
Back at the Bhusaval Control Office the full impact of the happenings at Bhopal was still sinking in. Plans were made to send medical aid and manpower to Bhopal to restart the operations.
In the glorious tradition of Indian Railways not one employee questioned the decision to send people to Bhopal. Whenever there is a disaster, man made or natural, it is ingrained in railwaymen to rush to the scene of the disaster and none will quit his post till the job is done. The last civilian to leave Tezpur when the Chinese invaded India in 1962 was the Station Master!
Meanwhile, rumours had spread that a second wave of poisonous gas, even deadlier than the first one, had broken loose and the steady exodus further swelled due to the rush of the panic stricken residents.
While these streams of humanity were going out of Bhopal, there was one band of railwaymen going towards Bhopal. In retrospect one may say “Fools rushed where angels feared to tread,” but at that point of time the Railwaymen and women of Itarsi, 90 kms. from Bhopal banded themselves together and set off in a caravan of road vehicles to the illfated city of Bhopal. Unmindful of the people exhorting them to go back, the unsung heroes armed with food and medicine, wended their way to Bhopal.
Nobody knew exactly what had happened except that some gas had engulfed Bhopal and as the sun rose the gas diffused and finally dispersed leaving in its wake thousands of humans choking, coughing and blinded. The “council of war” at the Bhusaval control office decided that a relief train should start immediately. On the presumption that only a nerve gas could disable people so rapidly, all the stocks of ATROPINE were commandeered along with hundreds of vials of eye drops.
The Special Train carrying a multidisciplinary team of railway employees including doctors and para-medics, covered the distance of 302 kms. from Bhusaval to Itarsi in 3 hours flat. When we reached Bhopal we were informed that the Government Administration had finally got their act together - probably shamed into action by the railwaymen who had proceeded from Itarsi.
We were told to organise relief operations in the Itarsi civil hospital. We found that the ATROPINE vials and “Visine” eye drops were useless. I still do not know whether there is an antidote to METHYL ISOCYANATE - the poisonous substance which had annihilated everyone near the Union Carbide Factory in Bhopal.
The sight at Itarsi was something straight out of Dante’s ‘Inferno.’ Dozens of men, women and children were writhing in agony and we watched them in horrified helplessness. Death was a welcome relief to the victims, their eyeballs swollen red and bursting, every breath bringing agony to their burning lungs. The screams of the tortured bodies were in different languages. As train after train went past Itarsi discharging the bodies of the victims of the monstrous gas, the famous cliché that “from Kashmir to Kanniyakumari Indian Railways is one” was poignantly apparent as we tried our best to soothe the victims in whatever language we could speak. Faced with their end these poor souls uncomplainingly requested that their next of kin should be informed and their belongings taken care of. I still cannot forget the poor blinded Malayalee boy holding my hands imploring me to convey some important news to his mother in Kerala.
The dying wish of a TTE (Travelling Ticket Examiner ) was that his settlement dues should be expedited and his family cared for. In his delirious death he kept apologising for abandoning his train and pressed the reservation chart into the hands of another railwayman. His sightless eyes failed to reveal that it was a doctor.
There was no way for postmortem to be performed and all the death certificates were signed with the words “Cardiac arrest due to unknown causes”.
The railways raced back to normality within 24 hours of the accident. Hundreds of railwaymen still bear the physical and mental scars of that black day.
When I joined the Railways I was asked to make a daily prayer that there should be no fatal railway accidents in my career and I do not have to remove mangled bodies from a train wreck. I never expected that I would live to see so many dead and dying humans around.
While we continue to pray for their souls, let us salute the railwaymen who tenaciously clung to their workspots and rushed to the scene of disaster.
V. Anand,
Ex-ADRM/BSL/CR,
Now GM/SR
Eighteen years have gone by since the Bhopal Gas tragedy. The victims of the biggest industrial accident are yet to receive succour. “The Bhopal Gas Tragedy “ has been lost in the collective consciousness of the nation. Yes, life has to go on - we must light candles and offer prayers for the victims of September, 11 2001 - but do spare a thought for those who lost their lives in their devotion to duty.
I am talking of the “unhonoured,” “unwept” and “unsung” railwaymen who stood like “boys on the burning deck” and kept the wheels of Indian Railways turning.
Third of December 1984 dawned like any other day at Bhusaval Junction the heart of Central Railway operations. It was a pleasant bracing winter morning and it was “…business as usual….” The 00-00 hours to 08-00 hours shift in the Control Office was busy tying up the loose ends of the previous day’s operations and gathering information to plan the day’s work. The telephone lines were buzzing from different directions and all the ‘control boards’ were busy like the proverbial beehives. North bound trains towards Itarsi Junction, South bound trains towards Mumbai, West bound trains towards Surat and East bound trains towards Nagpur marked their progress on the control charts.
But wait! the Itarsi line was fading. Those were the days when railway communication was mainly through the overhead telegraph wires. Optic Fibre Cable was still in its infancy. It was the pre Sam-Pitroda days and telephone instruments were a luxury. There were no STD facilities and what was called a “lighting call” took a couple of hours to materialise!
At first the Bhusaval Control Office shrugged off the lack of communication with Itarsi as routine, but when the silence continued it was disquieting. The railways still had their more than 100 years old MORSE instruments functioning and there was a class of railwaymen which is extinct now called ‘Signallers’ who used the DOT-DASH-DOT method to raise Bhopal. Finally the headquarters control office at Mumbai confirmed that there was something seriously amiss at Bhopal which in those days was an area controlled from the Jhansi Railway Divisional Office. Communication to Bhopal was via Itarsi.
By about 6-00 a.m it was evident that a disaster had struck Bhopal. No trains were leaving Bhopal and those which entered just seemed to have disappeared into a ‘black hole’ till the yard was full and no more trains could be admitted.
The initial reports were almost flippant – “…. some evil fairy has struck and sleeping sickness has overtaken Bhopal….” Wild rumours started spreading. In the aftermath of the 1984 riots the militant Sikh organisations were blamed for everything.
Black 3rd December brought the news that people had been dropping dead like flies in Bhopal and those who could manage were scrambling into trains which were running away from Bhopal. There was a mass exodus with the Government functionaries abandoning Bhopal and commandeering whatever vehicles were available.
As the next shift railway workers streamed in at Bhopal they saw the horrifying sight of their colleagues slumped over at the workspot. Signalmen and Stationmasters in the busy NISHATPURA yard which was the epicentre of the gas leak had collapsed with the signal levers still in their hands. Since the signals did not turn green the engine drivers, died in their cabs dutifully waiting for the signals. Clerks at the booking windows had keeled over with the ticket boxes and the cash safe wide open. The only redeeming feature was that the deadly gas had struck without fear or favour and even thieves dare not enter Bhopal!
Back at the Bhusaval Control Office the full impact of the happenings at Bhopal was still sinking in. Plans were made to send medical aid and manpower to Bhopal to restart the operations.
In the glorious tradition of Indian Railways not one employee questioned the decision to send people to Bhopal. Whenever there is a disaster, man made or natural, it is ingrained in railwaymen to rush to the scene of the disaster and none will quit his post till the job is done. The last civilian to leave Tezpur when the Chinese invaded India in 1962 was the Station Master!
Meanwhile, rumours had spread that a second wave of poisonous gas, even deadlier than the first one, had broken loose and the steady exodus further swelled due to the rush of the panic stricken residents.
While these streams of humanity were going out of Bhopal, there was one band of railwaymen going towards Bhopal. In retrospect one may say “Fools rushed where angels feared to tread,” but at that point of time the Railwaymen and women of Itarsi, 90 kms. from Bhopal banded themselves together and set off in a caravan of road vehicles to the illfated city of Bhopal. Unmindful of the people exhorting them to go back, the unsung heroes armed with food and medicine, wended their way to Bhopal.
Nobody knew exactly what had happened except that some gas had engulfed Bhopal and as the sun rose the gas diffused and finally dispersed leaving in its wake thousands of humans choking, coughing and blinded. The “council of war” at the Bhusaval control office decided that a relief train should start immediately. On the presumption that only a nerve gas could disable people so rapidly, all the stocks of ATROPINE were commandeered along with hundreds of vials of eye drops.
The Special Train carrying a multidisciplinary team of railway employees including doctors and para-medics, covered the distance of 302 kms. from Bhusaval to Itarsi in 3 hours flat. When we reached Bhopal we were informed that the Government Administration had finally got their act together - probably shamed into action by the railwaymen who had proceeded from Itarsi.
We were told to organise relief operations in the Itarsi civil hospital. We found that the ATROPINE vials and “Visine” eye drops were useless. I still do not know whether there is an antidote to METHYL ISOCYANATE - the poisonous substance which had annihilated everyone near the Union Carbide Factory in Bhopal.
The sight at Itarsi was something straight out of Dante’s ‘Inferno.’ Dozens of men, women and children were writhing in agony and we watched them in horrified helplessness. Death was a welcome relief to the victims, their eyeballs swollen red and bursting, every breath bringing agony to their burning lungs. The screams of the tortured bodies were in different languages. As train after train went past Itarsi discharging the bodies of the victims of the monstrous gas, the famous cliché that “from Kashmir to Kanniyakumari Indian Railways is one” was poignantly apparent as we tried our best to soothe the victims in whatever language we could speak. Faced with their end these poor souls uncomplainingly requested that their next of kin should be informed and their belongings taken care of. I still cannot forget the poor blinded Malayalee boy holding my hands imploring me to convey some important news to his mother in Kerala.
The dying wish of a TTE (Travelling Ticket Examiner ) was that his settlement dues should be expedited and his family cared for. In his delirious death he kept apologising for abandoning his train and pressed the reservation chart into the hands of another railwayman. His sightless eyes failed to reveal that it was a doctor.
There was no way for postmortem to be performed and all the death certificates were signed with the words “Cardiac arrest due to unknown causes”.
The railways raced back to normality within 24 hours of the accident. Hundreds of railwaymen still bear the physical and mental scars of that black day.
When I joined the Railways I was asked to make a daily prayer that there should be no fatal railway accidents in my career and I do not have to remove mangled bodies from a train wreck. I never expected that I would live to see so many dead and dying humans around.
While we continue to pray for their souls, let us salute the railwaymen who tenaciously clung to their workspots and rushed to the scene of disaster.
V. Anand,
Ex-ADRM/BSL/CR,
Now GM/SR
The Chernobyl disaster http://en.wikipedia.org/wiki/Chernobyl_disaster
The Chernobyl disaster was a nuclear reactor accident at the Chernobyl Nuclear Power Plant in Ukraine, then part of the Soviet Union. It is considered to be the worst nuclear power plant disaster in history and the only level 7 instance on the International Nuclear Event Scale. It resulted in a severe release of radioactivity following a massive power excursion which destroyed the reactor. Two people died in the initial steam explosion, but most deaths from the accident were attributed to radiation.
On 26 April 1986 01:23:45 a.m. (UTC+3) reactor number four at the Chernobyl plant, near Pripyat in the Ukrainian Soviet Socialist Republic, exploded. Further explosions and the resulting fire sent a plume of highly radioactive fallout into the atmosphere and over an extensive geographical area. Four hundred times more fallout was released than had been by the atomic bombing of Hiroshima.[2]
The plume drifted over extensive parts of the western Soviet Union, Eastern Europe, Western Europe, Northern Europe, and eastern North America, with light nuclear rain falling as far as Ireland. Large areas in Ukraine, Belarus, and Russia were badly contaminated, resulting in the evacuation and resettlement of over 336,000 people. According to official post-Soviet data,[3] about 60% of the radioactive fallout landed in Belarus.
The accident raised concerns about the safety of the Soviet nuclear power industry, slowing its expansion for a number of years, while forcing the Soviet government to become less secretive. The countries of Russia, Ukraine, and Belarus have been burdened with the continuing and substantial decontamination and health care costs of the Chernobyl accident. It is difficult to accurately quantify the number of deaths caused by the events at Chernobyl, as the Soviet-era cover-up made it difficult to track down victims. Lists were incomplete, and Soviet authorities later forbade doctors to cite "radiation" on death certificates.[4]
The 2005 report prepared by the Chernobyl Forum, led by the International Atomic Energy Agency (IAEA) and World Health Organization (WHO), attributed 56 direct deaths (47 accident workers, and nine children with thyroid cancer), and estimated that there may be 4,000 extra cancer deaths among the approximately 600,000 most highly exposed people.[1] Although the Chernobyl Exclusion Zone and certain limited areas remain off limits, the majority of affected areas are now considered safe for settlement and economic activity.[5]
On 26 April 1986 01:23:45 a.m. (UTC+3) reactor number four at the Chernobyl plant, near Pripyat in the Ukrainian Soviet Socialist Republic, exploded. Further explosions and the resulting fire sent a plume of highly radioactive fallout into the atmosphere and over an extensive geographical area. Four hundred times more fallout was released than had been by the atomic bombing of Hiroshima.[2]
The plume drifted over extensive parts of the western Soviet Union, Eastern Europe, Western Europe, Northern Europe, and eastern North America, with light nuclear rain falling as far as Ireland. Large areas in Ukraine, Belarus, and Russia were badly contaminated, resulting in the evacuation and resettlement of over 336,000 people. According to official post-Soviet data,[3] about 60% of the radioactive fallout landed in Belarus.
The accident raised concerns about the safety of the Soviet nuclear power industry, slowing its expansion for a number of years, while forcing the Soviet government to become less secretive. The countries of Russia, Ukraine, and Belarus have been burdened with the continuing and substantial decontamination and health care costs of the Chernobyl accident. It is difficult to accurately quantify the number of deaths caused by the events at Chernobyl, as the Soviet-era cover-up made it difficult to track down victims. Lists were incomplete, and Soviet authorities later forbade doctors to cite "radiation" on death certificates.[4]
The 2005 report prepared by the Chernobyl Forum, led by the International Atomic Energy Agency (IAEA) and World Health Organization (WHO), attributed 56 direct deaths (47 accident workers, and nine children with thyroid cancer), and estimated that there may be 4,000 extra cancer deaths among the approximately 600,000 most highly exposed people.[1] Although the Chernobyl Exclusion Zone and certain limited areas remain off limits, the majority of affected areas are now considered safe for settlement and economic activity.[5]
HOW TO BECOME IR in Malaysia
Graduate Engineers
First of all, if you are Malaysian and practicing engineering in Malaysia, you shall be register yourself as Graduate Engineer to Board of Engineer Malaysia (BEM). Failing of registration to BEM is considered ILLEGAL under the Registration of Engineers Act 1967 (revised 2002).
The basic requirement to be qualified for registration as Graduate Engineer is you shall obtain one of the following :
a. An engineering degree accredited / recognised by BEM available in an approved list maintained by BEM or;
b. Pass in Part I & Part II of the Engineering Council Examination of United Kingdom or;
c. Pass in Part I & Part II of the IEM/BEM Graduate Examination in any particular branch.
Details of registration can refer to “GRADUATE ENGINEERS Requirements and Procedures” and form ready for downloaded from BEM website.
Temporary Engineers
If you are foreign citizen and practicing engineering in Malaysia, you shall register yourself as Temporary Engineer in Board of Engineer Malaysia (BEM). Similarly failing of registration to BEM is considered ILLEGAL under the Registration of Engineers Act 1967 (revised 2002).
Details of registration can refer to “TEMPORARY ENGINEERS Requirements and Procedures” and form ready for downloaded from BEM website.
Professional Engineers
Previously, there were 2 methods to become Professional Engineer (PE) in Malaysia.
Method 1 :
Previously, graduate engineer worked under Professional Engineer (PE) with same discipline for number of years as stipulated, prepare log book (quarterly), summary of experiences, accumulate enough credit hours and attend Professional Assessment Examination (PAE) organize by Board of Engineer Malaysia (BEM). Read circular here –
http://www.bem.org.my/cpd/19sept2005/pdpcircular2-2005.doc
If you login to BEM website, you may still find above method (as of 20 Dec 2007) is valid. However, recent confirmation with BEM, BEM has TEMPORARY STOP conducting any Professional Assessment Examination (PAE) from 1st JAN 2007. Thus, this method may not work for time being until further notice.
Method 2 :
Worked under Professional Engineer (PE) with same discipline for number of years as stipulated (e.g minimum 3 years for those graduated prior to 01 Jan 1998 and minimum 4 years for those graduated after 01 Jan 1998) , prepare log book (quarterly) or detailed report, summary of experiences and attend Professional Interview (PI) organize by The Institution of Engineers, Malaysia (IEM). Once you get your corporate membership (MIEM) with IEM, you may apply to BEM to obtain PE status.
The log book may be accumulated experiences for every quarter and endorsed by Professional Engineer (PE) you work with. However, the detailed report may be prepared for knowledge and experiences gained in ONE of the project within the stipulated period and endorsed by Professional Engineer (PE) you work with.
For the Professional Interview (PI), you have to attend a one (1) Professional Interview conducted by TWO Professional Interviewers and write two essays (normally one related to technical and another related to ethic and professional conduct)
You may click the links to download the example of log book and summary format.
Difference Role between BEM and IEM
Some of you may some confusion between BEM and IEM.
BEM is government body
authority to ensure all practicing engineer in compliance to MALAYSIA’s LAW in engineering related. Once you are certified by BEM, you are Professional Engineer (PE) and you can apply Ir. in front of you name i.e. Ir. JoeWong
IEM is professional body
a body promote professionalism and encourage continuous learning. Provide professional opinion to BEM whenever required. NO authority at all in legal terms. Once you are approved by IEM as member, you are Corporate member of IEM and you can apply ENGR at the end or below your name.
Two Cents advice
i) As BEM temporary STOP to conduct any PAE, it may extends to no-date. Do not wait for BEM. Register to IEM immediately. However if you still have doubt, you may contact BEM (application@bem.org.my).
ii) Application via IEM, you only have to prepare & submit log book (OR detailed report) and summary of experiences, pass the professional interview and essay writing (2 nos), be a member of IEM and apply to BEM as PE. In my opinion, this method is pretty simple and time saving (even though method 1 via BEM still available).
iii) If you are lazy man or have “no time” to prepare the log book, you still have the chance to prepare a detailed report. Method 2 would allow you to do so.
Ads by Google
Manufacturing leaders
Career enhancement in manufacturing Operations Excellence MSc
www.cranfield.ac.uk/sas/mastersEngineers 4 Australia
PR easier now for Engineers. Apply fast before Bonus ends.
www.PRforAustralia.comCSC Engineering Software
Leading Civil & Structural tool used by top consultants. Try Now!
www.cscworld.comProduction Engineering
MSc by distance learning Download a Free brochure online!
www.sobe.salford.ac.uk
First of all, if you are Malaysian and practicing engineering in Malaysia, you shall be register yourself as Graduate Engineer to Board of Engineer Malaysia (BEM). Failing of registration to BEM is considered ILLEGAL under the Registration of Engineers Act 1967 (revised 2002).
The basic requirement to be qualified for registration as Graduate Engineer is you shall obtain one of the following :
a. An engineering degree accredited / recognised by BEM available in an approved list maintained by BEM or;
b. Pass in Part I & Part II of the Engineering Council Examination of United Kingdom or;
c. Pass in Part I & Part II of the IEM/BEM Graduate Examination in any particular branch.
Details of registration can refer to “GRADUATE ENGINEERS Requirements and Procedures” and form ready for downloaded from BEM website.
Temporary Engineers
If you are foreign citizen and practicing engineering in Malaysia, you shall register yourself as Temporary Engineer in Board of Engineer Malaysia (BEM). Similarly failing of registration to BEM is considered ILLEGAL under the Registration of Engineers Act 1967 (revised 2002).
Details of registration can refer to “TEMPORARY ENGINEERS Requirements and Procedures” and form ready for downloaded from BEM website.
Professional Engineers
Previously, there were 2 methods to become Professional Engineer (PE) in Malaysia.
Method 1 :
Previously, graduate engineer worked under Professional Engineer (PE) with same discipline for number of years as stipulated, prepare log book (quarterly), summary of experiences, accumulate enough credit hours and attend Professional Assessment Examination (PAE) organize by Board of Engineer Malaysia (BEM). Read circular here –
http://www.bem.org.my/cpd/19sept2005/pdpcircular2-2005.doc
If you login to BEM website, you may still find above method (as of 20 Dec 2007) is valid. However, recent confirmation with BEM, BEM has TEMPORARY STOP conducting any Professional Assessment Examination (PAE) from 1st JAN 2007. Thus, this method may not work for time being until further notice.
Method 2 :
Worked under Professional Engineer (PE) with same discipline for number of years as stipulated (e.g minimum 3 years for those graduated prior to 01 Jan 1998 and minimum 4 years for those graduated after 01 Jan 1998) , prepare log book (quarterly) or detailed report, summary of experiences and attend Professional Interview (PI) organize by The Institution of Engineers, Malaysia (IEM). Once you get your corporate membership (MIEM) with IEM, you may apply to BEM to obtain PE status.
The log book may be accumulated experiences for every quarter and endorsed by Professional Engineer (PE) you work with. However, the detailed report may be prepared for knowledge and experiences gained in ONE of the project within the stipulated period and endorsed by Professional Engineer (PE) you work with.
For the Professional Interview (PI), you have to attend a one (1) Professional Interview conducted by TWO Professional Interviewers and write two essays (normally one related to technical and another related to ethic and professional conduct)
You may click the links to download the example of log book and summary format.
Difference Role between BEM and IEM
Some of you may some confusion between BEM and IEM.
BEM is government body
authority to ensure all practicing engineer in compliance to MALAYSIA’s LAW in engineering related. Once you are certified by BEM, you are Professional Engineer (PE) and you can apply Ir. in front of you name i.e. Ir. JoeWong
IEM is professional body
a body promote professionalism and encourage continuous learning. Provide professional opinion to BEM whenever required. NO authority at all in legal terms. Once you are approved by IEM as member, you are Corporate member of IEM and you can apply ENGR at the end or below your name.
Two Cents advice
i) As BEM temporary STOP to conduct any PAE, it may extends to no-date. Do not wait for BEM. Register to IEM immediately. However if you still have doubt, you may contact BEM (application@bem.org.my).
ii) Application via IEM, you only have to prepare & submit log book (OR detailed report) and summary of experiences, pass the professional interview and essay writing (2 nos), be a member of IEM and apply to BEM as PE. In my opinion, this method is pretty simple and time saving (even though method 1 via BEM still available).
iii) If you are lazy man or have “no time” to prepare the log book, you still have the chance to prepare a detailed report. Method 2 would allow you to do so.
Ads by Google
Manufacturing leaders
Career enhancement in manufacturing Operations Excellence MSc
www.cranfield.ac.uk/sas/mastersEngineers 4 Australia
PR easier now for Engineers. Apply fast before Bonus ends.
www.PRforAustralia.comCSC Engineering Software
Leading Civil & Structural tool used by top consultants. Try Now!
www.cscworld.comProduction Engineering
MSc by distance learning Download a Free brochure online!
www.sobe.salford.ac.uk
How You Can Become an Engineerhttp://technology.monster.co.uk/6437_EN_p4.asp
Marine and ocean engineers: Design, build and maintain ships, aircraft carriers, submarines, tankers, tugboats and other large waterborne vehicles. A marine engineer, for example, might select and maintain the machinery on a large ship, while an ocean engineer may be involved in designing and operating an oil rig that's been built out at sea.
Materials engineers: Develop the materials used to create various products. They work with metals, ceramics, plastics, semiconductors and composites to develop everything from clothes and vinyl siding to dinnerware and artificial limbs.
Mechanical engineers: Design tools, engines, electrical generators, internal combustion engines, elevators -- in short, any device that is mechanical in nature.
Mining engineers: Focus on locating, extracting and processing coal, metals and minerals so that those materials can be used by manufacturers and utility companies. For example, a mining engineer may develop a site-specific approach to extracting a mineral deposit efficiently and safely.
Nuclear engineers: Determine the processes, instruments and systems necessary to tap into nuclear energy and radiation. Some nuclear engineers might design nuclear plants, for instance, while others may develop nuclear power sources for spacecraft or innovative diagnostic procedures for physicians.
Petroleum engineers: Oversee searches around the world for new sources of oil and natural gas. They also figure out how those natural resources will be extracted and design the equipment and tools necessary to do so.
As Geraldine Garner writes in Careers in Engineering, “The different types of engineering fields are as numerous and diverse as the skill and knowledge base of engineering professionals.”
You can find additional information about specific engineering careers in Monster's Job Profiles and Web sites for the professional associations affiliated with each engineering specialty.
So give yourself the chance to explore the possibilities. Perhaps you'll one day have designs on a career in the diverse world of engineering.
Materials engineers: Develop the materials used to create various products. They work with metals, ceramics, plastics, semiconductors and composites to develop everything from clothes and vinyl siding to dinnerware and artificial limbs.
Mechanical engineers: Design tools, engines, electrical generators, internal combustion engines, elevators -- in short, any device that is mechanical in nature.
Mining engineers: Focus on locating, extracting and processing coal, metals and minerals so that those materials can be used by manufacturers and utility companies. For example, a mining engineer may develop a site-specific approach to extracting a mineral deposit efficiently and safely.
Nuclear engineers: Determine the processes, instruments and systems necessary to tap into nuclear energy and radiation. Some nuclear engineers might design nuclear plants, for instance, while others may develop nuclear power sources for spacecraft or innovative diagnostic procedures for physicians.
Petroleum engineers: Oversee searches around the world for new sources of oil and natural gas. They also figure out how those natural resources will be extracted and design the equipment and tools necessary to do so.
As Geraldine Garner writes in Careers in Engineering, “The different types of engineering fields are as numerous and diverse as the skill and knowledge base of engineering professionals.”
You can find additional information about specific engineering careers in Monster's Job Profiles and Web sites for the professional associations affiliated with each engineering specialty.
So give yourself the chance to explore the possibilities. Perhaps you'll one day have designs on a career in the diverse world of engineering.
How You Can Become an Engineer
Aerospace engineers: Develop aeroplanes, spacecraft, missiles, and other vehicles and machines that fly here in Earth's atmosphere or in outer space. Aerospace engineers who specialise in aircraft are called aeronautical engineers, while those who focus on spacecraft are called astronautical engineers.
Agricultural and biological engineers: Combine their expertise in engineering technologies and biological sciences to develop, for example, agricultural machinery and structures. They also work to solve related environmental problems, such as soil erosion, and create new ways to use agricultural byproducts and natural resources.
Biomedical engineers: Use their knowledge of engineering, medicine and biology to find creative solutions to medical and health-related problems. Some biomedical engineers, for instance, design devices for medical procedures, while others develop artificial organs or artificial joint replacements.
Chemical engineers: Combine engineering and chemistry principles to study the production and uses of chemicals in a wide range of practical applications. For example, it is often a chemical engineer who works on improving food-processing techniques or developing better fertilizers.
Environmental engineers: Use their backgrounds in engineering, biology and chemistry to solve problems that have an environmental element. They can be involved in everything from controlling water and air pollution to creating effective recycling programs to conducting studies on hazardous-waste management.
Industrial engineers: Typically work in manufacturing facilities, making sure that organisations produce their products as efficiently, cost effectively and safely as possible. Some industrial engineers are involved in designing production processes and factory-floor layout schemes. Others address work site or product safety and health issues so that both workers and the consuming public are protected.
Agricultural and biological engineers: Combine their expertise in engineering technologies and biological sciences to develop, for example, agricultural machinery and structures. They also work to solve related environmental problems, such as soil erosion, and create new ways to use agricultural byproducts and natural resources.
Biomedical engineers: Use their knowledge of engineering, medicine and biology to find creative solutions to medical and health-related problems. Some biomedical engineers, for instance, design devices for medical procedures, while others develop artificial organs or artificial joint replacements.
Chemical engineers: Combine engineering and chemistry principles to study the production and uses of chemicals in a wide range of practical applications. For example, it is often a chemical engineer who works on improving food-processing techniques or developing better fertilizers.
Environmental engineers: Use their backgrounds in engineering, biology and chemistry to solve problems that have an environmental element. They can be involved in everything from controlling water and air pollution to creating effective recycling programs to conducting studies on hazardous-waste management.
Industrial engineers: Typically work in manufacturing facilities, making sure that organisations produce their products as efficiently, cost effectively and safely as possible. Some industrial engineers are involved in designing production processes and factory-floor layout schemes. Others address work site or product safety and health issues so that both workers and the consuming public are protected.
हाउ तो बेकोमे एन्गीनेर by Peter Vogthttp://technology.monster.co.uk/6437_EN_p1.asp
If you've ever considered a career in engineering, you probably thrive on problem solving. That's good, because one of the first problems you'll need to tackle as you explore this broad field is deciding what type of engineer you'd like to be.
You may be aware of the most common engineering subspecialties, like civil engineering (the design of roads, bridges, buildings and the like), computer engineering (the design of computer hardware), and electrical and electronic engineering (the design of electrical and electronic systems, including computer systems and software). But did you know that there are literally hundreds of different job titles under the engineering umbrella in at least a dozen categories
You may be aware of the most common engineering subspecialties, like civil engineering (the design of roads, bridges, buildings and the like), computer engineering (the design of computer hardware), and electrical and electronic engineering (the design of electrical and electronic systems, including computer systems and software). But did you know that there are literally hundreds of different job titles under the engineering umbrella in at least a dozen categories
दातो SeriAnwar Ibrahim and Oil subsidy
Kepada Sidang Pengarang
Penasihat kepada Parti Keadilan Rakyat Datuk Seri Anwar Ibrahim sekali lagi berjanji yang PAKATAN RAKYAT akan menrunkan harga
runcit minyak petroleum sebaik sahaja mereka dapat menubuhkan kerajaan baru Malaysia. Sebagi penguna barangan dan
perkhidmatani saya ingat ini adalah satu cadangan yang baik , tetapi jika saya membuat analisa secara mendalam saya tidak akan
percaya sepenuhnya apa yang dicadangkan oleh Anwar.Saya masih ingat sebelum pilihan raya , pakatan rakyat telah berjanji kepada
penduduk negeri Selangor yang mereka akan menurunkan cukai pintu tetapi sampai sekarang janji tersebut belum tertunai.
Anwar sebagai seorang pakar ekonomi yang masyhur dan handal , juga mempunyai tugas untuk memberikan maklumat dan pendidikan
yang tepat kepada rakyat dan tak sepatut nya membuat janji sahaja untuk mendapat sokongan sahaja.Keadaan di Malaysia adalah
jauh bezanya dengan keadaan negara pengeluar minyak yang utama di Asia Barat.Negara kita bukan bergantung kepada minyak
sahaja untuk perkembangan ekonomi, tetapi juga bergantung kepada sektor ekonomi lain untuk mengekalkan prestasi Ekonomi
Kita.Memang tidak dapat dinafikan pendapatan dari Petronas menyumbangkan lebih kurang 35 % daripada pendapatan kerajaan , tetapi
ini tidak bermaksud yang kita boleh membelanjakan sebahagian besar daripada sumbangan ini sebagai subsidi untuk minyak
petroleum.Pendapatan dari sumbangan petronas harus diperuntukan baga tujuan untuk memastikan bekalan makanan yang cukup dan
harga makanan yang stabil. Selain daripada itu kita juga harus mempertimbangkan perkembangan berterusan di Malaysia.
Sebagaimana yang kita ketahui Sektor pengilangan adalah merupakan daya pendorong utama bagi perkembangan ekonomi negara
kita , jika sektor pengilangan Malaysia bergantung kepada Subsidi Tenaga untuk selama lamanya dan tidak mencari jalan untuk
menrendahkan kos pengeluaran dan mempertingkatan daya pengeluaran mereka,sudah pasti pengusaha pengusaha industri
pengilangan malaysia akan dapat bersaing dengan negara lain, apabila Malaysia menjadi pengimpot minyak satu hari nanti.
Pada pendapat saya cara untuk mengatasi masaalah ekonomi bukan dengan subsidi sahaja , tetapi melalui peningkatan teknologi ,
daya pengeluran dan pengurusan yang sempurna.Negara negara seperti Jepun ,Korea ,dan Singapura mengimpot hampir kesemua
bekalan tenaga mereka, tetapi mereka juga dapat menandangi masaalah yang disebabkan oleh krisis minyak untuk dua kali.
.Hasil minyak petroleum tidak semesti nya menjamin yang kita akan makmur untuk selama lamanya, Industri perlombongan
timah pernah membawa kemakmuran kepada kita dulu, apa yang terjadi pada industri perlombongan timah hari ini.Patutlah kita
menyediakan payung sebelum hujan, tak patutlah kita mengorek perigi pada saat kita berasa haus
yang Ikhlas
HOHO
Penasihat kepada Parti Keadilan Rakyat Datuk Seri Anwar Ibrahim sekali lagi berjanji yang PAKATAN RAKYAT akan menrunkan harga
runcit minyak petroleum sebaik sahaja mereka dapat menubuhkan kerajaan baru Malaysia. Sebagi penguna barangan dan
perkhidmatani saya ingat ini adalah satu cadangan yang baik , tetapi jika saya membuat analisa secara mendalam saya tidak akan
percaya sepenuhnya apa yang dicadangkan oleh Anwar.Saya masih ingat sebelum pilihan raya , pakatan rakyat telah berjanji kepada
penduduk negeri Selangor yang mereka akan menurunkan cukai pintu tetapi sampai sekarang janji tersebut belum tertunai.
Anwar sebagai seorang pakar ekonomi yang masyhur dan handal , juga mempunyai tugas untuk memberikan maklumat dan pendidikan
yang tepat kepada rakyat dan tak sepatut nya membuat janji sahaja untuk mendapat sokongan sahaja.Keadaan di Malaysia adalah
jauh bezanya dengan keadaan negara pengeluar minyak yang utama di Asia Barat.Negara kita bukan bergantung kepada minyak
sahaja untuk perkembangan ekonomi, tetapi juga bergantung kepada sektor ekonomi lain untuk mengekalkan prestasi Ekonomi
Kita.Memang tidak dapat dinafikan pendapatan dari Petronas menyumbangkan lebih kurang 35 % daripada pendapatan kerajaan , tetapi
ini tidak bermaksud yang kita boleh membelanjakan sebahagian besar daripada sumbangan ini sebagai subsidi untuk minyak
petroleum.Pendapatan dari sumbangan petronas harus diperuntukan baga tujuan untuk memastikan bekalan makanan yang cukup dan
harga makanan yang stabil. Selain daripada itu kita juga harus mempertimbangkan perkembangan berterusan di Malaysia.
Sebagaimana yang kita ketahui Sektor pengilangan adalah merupakan daya pendorong utama bagi perkembangan ekonomi negara
kita , jika sektor pengilangan Malaysia bergantung kepada Subsidi Tenaga untuk selama lamanya dan tidak mencari jalan untuk
menrendahkan kos pengeluaran dan mempertingkatan daya pengeluaran mereka,sudah pasti pengusaha pengusaha industri
pengilangan malaysia akan dapat bersaing dengan negara lain, apabila Malaysia menjadi pengimpot minyak satu hari nanti.
Pada pendapat saya cara untuk mengatasi masaalah ekonomi bukan dengan subsidi sahaja , tetapi melalui peningkatan teknologi ,
daya pengeluran dan pengurusan yang sempurna.Negara negara seperti Jepun ,Korea ,dan Singapura mengimpot hampir kesemua
bekalan tenaga mereka, tetapi mereka juga dapat menandangi masaalah yang disebabkan oleh krisis minyak untuk dua kali.
.Hasil minyak petroleum tidak semesti nya menjamin yang kita akan makmur untuk selama lamanya, Industri perlombongan
timah pernah membawa kemakmuran kepada kita dulu, apa yang terjadi pada industri perlombongan timah hari ini.Patutlah kita
menyediakan payung sebelum hujan, tak patutlah kita mengorek perigi pada saat kita berasa haus
yang Ikhlas
HOHO
苏颂一生最大的贡献还在于复制水运仪象台
南洋閩學網誌網主:吴和豪
阅读过贵报关于中国发明对于世界影响的报道。我有这样的感想,马来西亚华社对
于中华文化的传承工作还不够完善。很多会馆只注重于举办也宴会,但不热衷于举
办较高层次的学术活动。马来西亚的华人庙宇有奉祠 老子,岳飞, 文天祥,朱
熹,苏颂等的历史人物,但不热衷于发扬他们在科技文教所作出的贡献。
闻名世界的北宋宰相苏颂出生于福建同安,南安地带,但祖籍福建同安及福建南安
的马来西亚华人多数不认识苏颂,反而 西方国家热爱天文学的人士更敬仰苏颂。
苏颂一生最大的贡献还在于复制水运仪象台。仪象台以水力运转,集天象观察、演
示和报时三种功能于一体,是世界上最早的天文钟。近代齿轮机械也是依照这种
仪器的操作原理而设计的。
为了进一步培养我国学生对天文学及中华科技历史的兴趣,我建议我国各文教组
织,民间乡团,商业机构共同合作,不时合办关于苏颂在科技文教所作出的贡献的
研讨会,讲座会。同时也设立奖金来鼓励技术学院的学生以立体画画软件设计水运
仪象。我希望华社能接受我的建议,因为我认为生于全球化的今天,我们必须以
更有创意的方法来传承我们的文化。
http://blog.sina.com.cn/s/blog_4a6b2a52010008f6.html
.http://www.lajzw.com/bbs/dispbbs.asp?boardid=4&;amp;amp;amp;amp;amp;id=574&star=1#574
阅读过贵报关于中国发明对于世界影响的报道。我有这样的感想,马来西亚华社对
于中华文化的传承工作还不够完善。很多会馆只注重于举办也宴会,但不热衷于举
办较高层次的学术活动。马来西亚的华人庙宇有奉祠 老子,岳飞, 文天祥,朱
熹,苏颂等的历史人物,但不热衷于发扬他们在科技文教所作出的贡献。
闻名世界的北宋宰相苏颂出生于福建同安,南安地带,但祖籍福建同安及福建南安
的马来西亚华人多数不认识苏颂,反而 西方国家热爱天文学的人士更敬仰苏颂。
苏颂一生最大的贡献还在于复制水运仪象台。仪象台以水力运转,集天象观察、演
示和报时三种功能于一体,是世界上最早的天文钟。近代齿轮机械也是依照这种
仪器的操作原理而设计的。
为了进一步培养我国学生对天文学及中华科技历史的兴趣,我建议我国各文教组
织,民间乡团,商业机构共同合作,不时合办关于苏颂在科技文教所作出的贡献的
研讨会,讲座会。同时也设立奖金来鼓励技术学院的学生以立体画画软件设计水运
仪象。我希望华社能接受我的建议,因为我认为生于全球化的今天,我们必须以
更有创意的方法来传承我们的文化。
http://blog.sina.com.cn/s/blog_4a6b2a52010008f6.html
.http://www.lajzw.com/bbs/dispbbs.asp?boardid=4&;amp;amp;amp;amp;amp;id=574&star=1#574
吉隆坡未来的增值并不是单单靠于基社及产业的提升,也有关乎到人文,艺术及环保的因素。
吉隆坡未来的增值并不是单单靠于基社及产业的提升,也有关乎到人文,艺术及环保的因素。
巴黎之所以闻名世界不是单单因为它是现代化的城市,也是因为这个城市不论是在人文,艺术或是环保都能呈现
独特的风格,尤其是它的卢浮宫博物馆非常吸引游客到来法国。
吉隆坡虽没有卢浮宫,但是活生生的博物馆也是非常有足够魅力。比如先都-曼蔗拉拉区就是一个亚洲的蹜影,在这地区有马来人,淡米尔人, 暹罗人,僧加罗人, 锡克人,古哈拉地人,及各籍贯的华人的村庄并建
有他们的宗教场所及会馆。
而且每天早晨我们可以在位于先都 的迩迈河岸看到栖息的苍鹭。这种独特的风格难在世界上其他地方找到,是我国人民应该引以为荣的。有鉴于此我希望吉隆坡市镇局的策划部门在修改吉隆坡发展大蓝图时能够更细心地注意也有关乎到人文,艺术及环保的因素。尽量保护各民族的村庄。把这些村庄规划为文化遗产保留区
我也建议市镇局的策划部门认真的研究在吉隆坡实行垂直農耕 (Vertical Farming), 因为我国有优厚的条件实行 垂直農耕, 以改善环保,粮食自供及能源效益的问题。市镇局者可鼓励人们在废弃的烟房或矿地实行垂直農耕。
巴黎之所以闻名世界不是单单因为它是现代化的城市,也是因为这个城市不论是在人文,艺术或是环保都能呈现
独特的风格,尤其是它的卢浮宫博物馆非常吸引游客到来法国。
吉隆坡虽没有卢浮宫,但是活生生的博物馆也是非常有足够魅力。比如先都-曼蔗拉拉区就是一个亚洲的蹜影,在这地区有马来人,淡米尔人, 暹罗人,僧加罗人, 锡克人,古哈拉地人,及各籍贯的华人的村庄并建
有他们的宗教场所及会馆。
而且每天早晨我们可以在位于先都 的迩迈河岸看到栖息的苍鹭。这种独特的风格难在世界上其他地方找到,是我国人民应该引以为荣的。有鉴于此我希望吉隆坡市镇局的策划部门在修改吉隆坡发展大蓝图时能够更细心地注意也有关乎到人文,艺术及环保的因素。尽量保护各民族的村庄。把这些村庄规划为文化遗产保留区
我也建议市镇局的策划部门认真的研究在吉隆坡实行垂直農耕 (Vertical Farming), 因为我国有优厚的条件实行 垂直農耕, 以改善环保,粮食自供及能源效益的问题。市镇局者可鼓励人们在废弃的烟房或矿地实行垂直農耕。
地图是规划发展中重要的文件不可出现严重的错误
吴和豪
吉隆坡发展大蓝图第二册第二部分所提供的资讯是有关于土地用途及发展密度的事项。里边编号100的标志地图
所涵盖的地方包括了怡保路二条石美联园(TAMAN MILLION)及华丽镇(KAMPONG KASIPPILAI)这两个住宅区。
这地图出现一些错误。
城市阁(SRI BANDAR)公寓与吉隆坡实业大厦(KL)之间建有一座桥墚但并没有
标志在这地图上。城市阁(SRI BANDAR)公寓是一座九层楼的公寓却被标志为(R1)的单居建筑
物。而且着地图所显示的人口密度及发展密度也不准确。除此之外聚星堂关帝庙也没有标志在这地图上。
地图是规划发展中重要的文件,不可出现严重的错误。因为这可以造成规划不周全而引起交通阻塞及公共设施不
足等的民生问题。我不知其他的地图有没有出现这样的问题。如有的话有关单局不应急于推行吉隆坡发展大蓝图
的计划。应分阶段分地区,让吉隆坡每一个地区的市民参与检查吉隆坡发展大蓝图之后再推行吉隆坡发展大蓝图的计划。
所谓欲速而不达,如要把吉隆坡打造为世界级的城市,市政局策划部门也必须遵守国际标准机构(ISO)所定的满
足客户及言行一致的两大原则。
吉隆坡发展大蓝图第二册第二部分所提供的资讯是有关于土地用途及发展密度的事项。里边编号100的标志地图
所涵盖的地方包括了怡保路二条石美联园(TAMAN MILLION)及华丽镇(KAMPONG KASIPPILAI)这两个住宅区。
这地图出现一些错误。
城市阁(SRI BANDAR)公寓与吉隆坡实业大厦(KL)之间建有一座桥墚但并没有
标志在这地图上。城市阁(SRI BANDAR)公寓是一座九层楼的公寓却被标志为(R1)的单居建筑
物。而且着地图所显示的人口密度及发展密度也不准确。除此之外聚星堂关帝庙也没有标志在这地图上。
地图是规划发展中重要的文件,不可出现严重的错误。因为这可以造成规划不周全而引起交通阻塞及公共设施不
足等的民生问题。我不知其他的地图有没有出现这样的问题。如有的话有关单局不应急于推行吉隆坡发展大蓝图
的计划。应分阶段分地区,让吉隆坡每一个地区的市民参与检查吉隆坡发展大蓝图之后再推行吉隆坡发展大蓝图的计划。
所谓欲速而不达,如要把吉隆坡打造为世界级的城市,市政局策划部门也必须遵守国际标准机构(ISO)所定的满
足客户及言行一致的两大原则。
山埃采金没危害人体????
据报道在6月25日首相署公共投诉局与环境局,卫生部,劳勿金矿公司代表等在关丹开联席会,议决符合所有准则,山埃采金没危害人体。
对于此议决我持有异见。第一为何在关丹开联席会而不是在劳勿。第二即使所谓金矿公司作业达安全水准未必意味着山埃采金没有影响当地人舒适生活,没有给当地人带来不便。
笔者曾在槟城Bayan Lepas一间电镀工厂作5年,也曾嗅过山埃的味道和报纸所报道的苦杏仁类似,而且还会引起喉咙有痰及发痒。即使是在检查仪器显示山埃程度的情况下也能嗅到这种味道。因此笔者认为不能单单靠检查仪器来确定公司工厂作业是否安全。本人也认为人的嗅觉感宫就是检查仪器了。但时对于我们在工厂的人来说我们已经习惯了这种味道,而且我们也有带防毒面罩。在我离开这工厂几年后,遇到以前的同事时,他们告诉我工厂情况已经大大改进,他们也没有再嗅到山埃的味道了。
第三在我工作5年当从未在工厂外附近嗅到山埃的味道。所以我不明白为何练金厂附近居住的居民能够嗅到山埃的味道呢?
武吉公满山埃采金所引起的问题并不只是地方性的问题, 而是全国甚至全球关注的环保问题。据报道练金厂附近的湖水所含的山埃是容许值量(allowable ppm)的400倍。除此之外当地的居民也有投诉当地的空气素质差 而且也有居民投诉有患上山埃所引至的皮肤病。山埃采金事件不但会影响当地的居民也有可能影响巴生流域的居民,因为据说雪兰莪准备向彭亨州买水,而水源距离劳勿只是数公里的距离。而且山埃所引起的污染还会破坏生态系统,影响了我国的声誉。我想纳吉总理提倡的一个马来西亚概念也包括了营造一个健康及有活力的马来西亚社会。
确保住宅区及公众场所的舒适环境不受工厂的作业活动所影响,工厂所排出来的水足够清洁,
BOD(Biological Oxygen Demand), COD(Chemical Oxygen Demand) 符合卫生标准及安全,不会破坏生态系统是每一间工厂所应尽的社会责任。
我们不能否认采金会为国家经济带来利益,但必须在没有影响该地区的居民的健康情况之下进行。
对于此议决我持有异见。第一为何在关丹开联席会而不是在劳勿。第二即使所谓金矿公司作业达安全水准未必意味着山埃采金没有影响当地人舒适生活,没有给当地人带来不便。
笔者曾在槟城Bayan Lepas一间电镀工厂作5年,也曾嗅过山埃的味道和报纸所报道的苦杏仁类似,而且还会引起喉咙有痰及发痒。即使是在检查仪器显示山埃程度的情况下也能嗅到这种味道。因此笔者认为不能单单靠检查仪器来确定公司工厂作业是否安全。本人也认为人的嗅觉感宫就是检查仪器了。但时对于我们在工厂的人来说我们已经习惯了这种味道,而且我们也有带防毒面罩。在我离开这工厂几年后,遇到以前的同事时,他们告诉我工厂情况已经大大改进,他们也没有再嗅到山埃的味道了。
第三在我工作5年当从未在工厂外附近嗅到山埃的味道。所以我不明白为何练金厂附近居住的居民能够嗅到山埃的味道呢?
武吉公满山埃采金所引起的问题并不只是地方性的问题, 而是全国甚至全球关注的环保问题。据报道练金厂附近的湖水所含的山埃是容许值量(allowable ppm)的400倍。除此之外当地的居民也有投诉当地的空气素质差 而且也有居民投诉有患上山埃所引至的皮肤病。山埃采金事件不但会影响当地的居民也有可能影响巴生流域的居民,因为据说雪兰莪准备向彭亨州买水,而水源距离劳勿只是数公里的距离。而且山埃所引起的污染还会破坏生态系统,影响了我国的声誉。我想纳吉总理提倡的一个马来西亚概念也包括了营造一个健康及有活力的马来西亚社会。
确保住宅区及公众场所的舒适环境不受工厂的作业活动所影响,工厂所排出来的水足够清洁,
BOD(Biological Oxygen Demand), COD(Chemical Oxygen Demand) 符合卫生标准及安全,不会破坏生态系统是每一间工厂所应尽的社会责任。
我们不能否认采金会为国家经济带来利益,但必须在没有影响该地区的居民的健康情况之下进行。
Petronas sebagai syarikat milik negara Malaysia mempunyai salah satu tugas yang penting iaitu membantu kerajaan untuk membangunkan negara secara berte
SAYA tidak bersetuju dengan manifesto DAP dan cadangan Setiausaha Agung parti itu, Lim Guan Eng untuk menggunakan 50 peratus daripada keuntungan yang diperoleh oleh Petronas sebagai bonus untuk meringankan beban rakyat.
Beliau mesti faham satu hakikat dengan jelas, Petronas sebagai syarikat milik negara Malaysia mempunyai salah satu tugas yang penting iaitu membantu kerajaan untuk membangunkan negara secara berterusan.
Keuntungan yang diperolehnya tidak seharusnya dibelanjakan habis dalam masa yang singkat, kerana kita kini hidup dalam zaman globalisasi yang lebih mencabar dan penuh dengan ketidaktentuan.
Janganlah fikir yang simpanan petroleum tidak akan habis satu hari nanti dan kita juga tidak boleh harapkan permintaan terhadap minyak petroleum akan kekal tidak berubah.
Setahu saya kini banyak negara seperti Finland, Sweden, Belanda dan Jepun sedang berusaha keras untuk mencari tenaga gantian alternatif. Contohnya minyak yang diperoleh daripada buah Jatropha Curcas telah digunakan untuk menjana kuasa elektrik di Jepun dan untuk mengendalikan jentera.
Sehubungan dengan ini, saya berpendapat sebahagian daripada keuntungan Petronas juga harus digunakan bagi tujuan penyelidikan dalam bidang tenaga gantian supaya negara boleh bersedia untuk menghadapi cabaran dan keperluan masa depan yang pastinya lebih kritikal. Kita haruslah sediakan payung sebelum hujan.
Maka adalah wajar bagi negara menggunakan keuntungan yang diperolehi daripada wang petroleum untuk pelaburan dalam bentuk pembangunan infrastruktur dan pendidikan untuk persiapan masa depan.
Saya masih ingat apa yang bekas Perdana Menteri, Tun Dr. Mahathir Mohamad nyatakan suatu masa dahulu berhubung isu ini.
Katanya, apa yang lebih penting bukanlah galian yang ada di bawah kaki tetapi yang utamanya kandungan dalam minda kita.
Maksudnya ialah kita mesti berusaha untuk menjana sumber manusia antaranya memberikan pendidikan terbaik kepada generasi muda melalui pelaburan dalam pendidikan supaya dapat kita bersaing dengan negara lain serta berkembang secara berterusan pada masa depan.
– GOH HOE HOE,
Kampung Kasipillai,
Beliau mesti faham satu hakikat dengan jelas, Petronas sebagai syarikat milik negara Malaysia mempunyai salah satu tugas yang penting iaitu membantu kerajaan untuk membangunkan negara secara berterusan.
Keuntungan yang diperolehnya tidak seharusnya dibelanjakan habis dalam masa yang singkat, kerana kita kini hidup dalam zaman globalisasi yang lebih mencabar dan penuh dengan ketidaktentuan.
Janganlah fikir yang simpanan petroleum tidak akan habis satu hari nanti dan kita juga tidak boleh harapkan permintaan terhadap minyak petroleum akan kekal tidak berubah.
Setahu saya kini banyak negara seperti Finland, Sweden, Belanda dan Jepun sedang berusaha keras untuk mencari tenaga gantian alternatif. Contohnya minyak yang diperoleh daripada buah Jatropha Curcas telah digunakan untuk menjana kuasa elektrik di Jepun dan untuk mengendalikan jentera.
Sehubungan dengan ini, saya berpendapat sebahagian daripada keuntungan Petronas juga harus digunakan bagi tujuan penyelidikan dalam bidang tenaga gantian supaya negara boleh bersedia untuk menghadapi cabaran dan keperluan masa depan yang pastinya lebih kritikal. Kita haruslah sediakan payung sebelum hujan.
Maka adalah wajar bagi negara menggunakan keuntungan yang diperolehi daripada wang petroleum untuk pelaburan dalam bentuk pembangunan infrastruktur dan pendidikan untuk persiapan masa depan.
Saya masih ingat apa yang bekas Perdana Menteri, Tun Dr. Mahathir Mohamad nyatakan suatu masa dahulu berhubung isu ini.
Katanya, apa yang lebih penting bukanlah galian yang ada di bawah kaki tetapi yang utamanya kandungan dalam minda kita.
Maksudnya ialah kita mesti berusaha untuk menjana sumber manusia antaranya memberikan pendidikan terbaik kepada generasi muda melalui pelaburan dalam pendidikan supaya dapat kita bersaing dengan negara lain serta berkembang secara berterusan pada masa depan.
– GOH HOE HOE,
Kampung Kasipillai,
道德经终身学习
道德经”四十五章有提到大成若缺,其用不弊,大盈若冲,其用不穷,大直若屈,大巧若拙,大辩若纱,静胜躁,寒胜热,清静为天下正。
我如果以白话文来诠释就是:一个完成了的系统还是有不足完美的地方,为了使到它系统能够继续操作,必须不断的改进,一个看起来结实的固体,里面有无数的空间,所以它的应用可以被扩充。
一个看起来是真直的东西还是有屈曲的部分,一个熟巧的艺匠还是会认为自己还有不够熟练的地方,所以不断地改进自己;一个善于演讲的人也觉得自己还不够流利,要不断学习。保持冷静能够使我们克服躁火。假如能够顺着这种原则,使到我们居住的环境清新又安静,那么世界就走上正轨了。
假如马来西亚人民及政治领导人能对道德经的“善道篇”有所掌握,相信我们的生活会过得更加美好,我们的国家会发展的更加顺畅。日本的一些学者认为日本在第二世界大战之后,能够顺畅发展是因为有一群有良知的学者们如池田大作能够引用东方的哲学激发日本人不断的终身学习,及成功地把东方的哲学精华引用在日本的企业管理当中。
假如终身学习能在日本、韩国实行成功,为什么我们马来西亚人还要对终身学习概念有所怀疑。我认为马华公会不可放弃推动终身学习,因为终身学习实行的成功将使国家及人民受惠。
资料来源:东方日报 28-03-2008
我如果以白话文来诠释就是:一个完成了的系统还是有不足完美的地方,为了使到它系统能够继续操作,必须不断的改进,一个看起来结实的固体,里面有无数的空间,所以它的应用可以被扩充。
一个看起来是真直的东西还是有屈曲的部分,一个熟巧的艺匠还是会认为自己还有不够熟练的地方,所以不断地改进自己;一个善于演讲的人也觉得自己还不够流利,要不断学习。保持冷静能够使我们克服躁火。假如能够顺着这种原则,使到我们居住的环境清新又安静,那么世界就走上正轨了。
假如马来西亚人民及政治领导人能对道德经的“善道篇”有所掌握,相信我们的生活会过得更加美好,我们的国家会发展的更加顺畅。日本的一些学者认为日本在第二世界大战之后,能够顺畅发展是因为有一群有良知的学者们如池田大作能够引用东方的哲学激发日本人不断的终身学习,及成功地把东方的哲学精华引用在日本的企业管理当中。
假如终身学习能在日本、韩国实行成功,为什么我们马来西亚人还要对终身学习概念有所怀疑。我认为马华公会不可放弃推动终身学习,因为终身学习实行的成功将使国家及人民受惠。
资料来源:东方日报 28-03-2008
由小油桐果實(麻風果)所提煉出的生物柴油性質與普通柴油接近
筆者:吳和豪
油價高漲及環境污染促使世界各國不得不尋找替代能源。風水日浪雖然可以產生能源但卻有局限性,而利用谷物作為再生能源卻引發了糧食短缺問題。
由小油桐果實(麻風果)所提煉出的生物柴油性質與普通柴油接近。此樹易于種植在熱帶條件缺佳的土地上,而又不是食物,所以可作為再生燃料的麻風果的確在油價高漲,糧食短缺之際讓人們看到了一道曙光。
但是要在馬來西亞促進麻風樹的種植并不是很容易。首先大家應該知道的就是雖然種植麻風樹需要較短的時間來取的收獲,但與棕油相比麻風果的價錢很低,因此在近期內沒有人敢冒險大量種植。種植麻風樹也是屬于人力密集的工作,與菲利兵,印尼,先鋪在,寮國,相比我國的工資較高,所以馬來西亞在吸引外資投資種植麻風樹會比較難。麻風果樹具有毒性,種植的人需懂如何防備。此外也要考慮到使用麻風樹油的引擎是否應該改良。
為推廣麻風樹在馬來西亞的種植及應用,政府及相關的企業應採取一系列的措施;包括1)土地規劃以避免麻風樹與其他農作物競爭土地的矛盾現象。2)為種植麻風果的農民提供優良的果種及技術訓練以增加農民的收入。3)引進或設計耕種及收割麻風果的機器。4)積極在麻風果的耕種及應用作研究。
從經濟及環保的角度來看我國應該認真推廣麻風果的耕種及應用因為這不但能提供我們足夠的環保型的再生能源,同時能帶動與再生能源有關的工業而進一步幫助我國取得持續性的發展。
油價高漲及環境污染促使世界各國不得不尋找替代能源。風水日浪雖然可以產生能源但卻有局限性,而利用谷物作為再生能源卻引發了糧食短缺問題。
由小油桐果實(麻風果)所提煉出的生物柴油性質與普通柴油接近。此樹易于種植在熱帶條件缺佳的土地上,而又不是食物,所以可作為再生燃料的麻風果的確在油價高漲,糧食短缺之際讓人們看到了一道曙光。
但是要在馬來西亞促進麻風樹的種植并不是很容易。首先大家應該知道的就是雖然種植麻風樹需要較短的時間來取的收獲,但與棕油相比麻風果的價錢很低,因此在近期內沒有人敢冒險大量種植。種植麻風樹也是屬于人力密集的工作,與菲利兵,印尼,先鋪在,寮國,相比我國的工資較高,所以馬來西亞在吸引外資投資種植麻風樹會比較難。麻風果樹具有毒性,種植的人需懂如何防備。此外也要考慮到使用麻風樹油的引擎是否應該改良。
為推廣麻風樹在馬來西亞的種植及應用,政府及相關的企業應採取一系列的措施;包括1)土地規劃以避免麻風樹與其他農作物競爭土地的矛盾現象。2)為種植麻風果的農民提供優良的果種及技術訓練以增加農民的收入。3)引進或設計耕種及收割麻風果的機器。4)積極在麻風果的耕種及應用作研究。
從經濟及環保的角度來看我國應該認真推廣麻風果的耕種及應用因為這不但能提供我們足夠的環保型的再生能源,同時能帶動與再生能源有關的工業而進一步幫助我國取得持續性的發展。
道德经第四十五篇“善道篇”
在马华党校上课时我也有学习到道德经第四十五篇“善道篇”原文如下“大成若缺、其用不敝。大盈若冲、其用不穷 ,大直若屈,大巧若拙,大辩若讷,静胜躁,寒胜热,清净为天下正”。如以白话文来解释就是一个完成了的系统还有不足的地方,应不断改善才它的功能才不会退竭。一个盈满的物体也有一些空间,所以它的用途可以被扩充。看似正直的也有歪曲的地方。练熟得艺匠总认为自己还苯拙。善于演讲的人总认为自己还不够流利。冷静可以克服躁烦,清新的气象及安定的环境是社会处于正轨的象征。以国家, 社团来作为系统的例子。这些系统都会随着社会的改变而出现各种各样的弱点,如能不时作出合适的调整以应合不同的需要,这系统的功能及作用就不会退化。为甚么以前很多人加入会馆,公会现在就很少。因为以前会馆是[新客]的落脚处,现在已经没有[新客]了相对的会馆对一个族群就没这么重要了。但这并不意味着这族群就没有问题了,一般上现在华人都不多生孩子因为一般的华人夫妇工作忙碌而又难请人看顾小孩。如果要鼓励华人多生,也许会馆应该考虑结合资源建立托儿所为收入较低的族人提供托儿服务。这样一来年青人就会越重视会馆。空间可以被解释为没有被充分利用的资源包括财力资源及人力资源,比如一般上华团太着重主办宴会及节目而 而没有善用为族人提供长期的终身学习计划,这是美中不足的地方.世界日益进步,知识日益更新。今天适合 于应用的知识及技术不久之后有可能就不能再派上用场。人如果没有不断学习,知识就会缩小,头脑就会退化,而无法与人竞争,也无法取得新的机会。因此我们应该鼓励国人不断学习以便能与时并进。终身学习当然也包括个人的身心修养,通过个人的身心修养,一个人的脾气会便得更好,生活的更健康,快乐而智慧也会增加,所以不会作错决定,也不易被人误导良好的终身学习计划能使国家社会有新陈代谢及取得平衡的发展。
民以食為天,從策略上來看,農業是國家的經濟命脈。
筆者:鄭麗芬
糧食短缺及物價高漲乃當今世界的兩大問題,作為世界主要貿易國及以開放制度操作的馬來西亞当然 也不能免于這兩大問題所帶來的影響。這兩大問題除了影響我們的日常生計之外也影響國家的發展計劃。與許多國家相比馬來西亞受到的衡擊比較小,但我們不可逸以待之而不找長期的解決方案。無可否認的物需品及服務補貼在穩定社會能發揮很大的功能,但并不是沒有缺點。因此我們也有需要提高國內的生產效率及改善國內的經濟操作機制,以使到我國能在抗衡通膨及維持發展當中取得平衡。我認為我國在面對危機的時候我們也能找到良機。我國馬來西亞得天獨厚,土地肥沃,常年如夏,適合耕作。如果能成功發展農業,不但能夠使我國達致白米自供自足的目標以穩定社會之外,還能把生產的糧食加工輸出國外以賺取大筆的外匯。國內的一些農村的農民非常努力,比如適耕莊的農民有能力實行兩年五造的耕種,但卻往往面對土地,人力,資金,技術不足的問題。為達致白米子自足的目標有關當局有需為農民提供協助改善他們的作業環境以提高他們的士氣。同時也要給予農民種種的獎勵,改善農村的基本建設,推動生態農業,休閑農業以增加農民的收入。為维持農村活力,我們更應該鼓勵年輕人從事農業,在農村設立農業大學或農業學院為農民的子女提供高等教育。以配合"馬來西亞第二家园计划"政府也可鼓勵國内外退休人士共同在馬來西亞從事農業。所謂民以食為天,從策略上來看,農業是國家的經濟命脈。
糧食短缺及物價高漲乃當今世界的兩大問題,作為世界主要貿易國及以開放制度操作的馬來西亞当然 也不能免于這兩大問題所帶來的影響。這兩大問題除了影響我們的日常生計之外也影響國家的發展計劃。與許多國家相比馬來西亞受到的衡擊比較小,但我們不可逸以待之而不找長期的解決方案。無可否認的物需品及服務補貼在穩定社會能發揮很大的功能,但并不是沒有缺點。因此我們也有需要提高國內的生產效率及改善國內的經濟操作機制,以使到我國能在抗衡通膨及維持發展當中取得平衡。我認為我國在面對危機的時候我們也能找到良機。我國馬來西亞得天獨厚,土地肥沃,常年如夏,適合耕作。如果能成功發展農業,不但能夠使我國達致白米自供自足的目標以穩定社會之外,還能把生產的糧食加工輸出國外以賺取大筆的外匯。國內的一些農村的農民非常努力,比如適耕莊的農民有能力實行兩年五造的耕種,但卻往往面對土地,人力,資金,技術不足的問題。為達致白米子自足的目標有關當局有需為農民提供協助改善他們的作業環境以提高他們的士氣。同時也要給予農民種種的獎勵,改善農村的基本建設,推動生態農業,休閑農業以增加農民的收入。為维持農村活力,我們更應該鼓勵年輕人從事農業,在農村設立農業大學或農業學院為農民的子女提供高等教育。以配合"馬來西亞第二家园计划"政府也可鼓勵國内外退休人士共同在馬來西亞從事農業。所謂民以食為天,從策略上來看,農業是國家的經濟命脈。
朱熹勸農文】及【朱熹社倉法
筆者:雪隆同安會館吉隆坡协理呉和豪
我的父親曾經告訴我,以前福建同安人非常崇拜敬南宋的朱熹。朱熹文公不但是世界聞名的理學家,在管理農業及控制物價方面所取得的成就,也給后世有很大的啟示。【朱熹勸農文】及【朱熹社倉法】是朱文公的其中兩大著作。在朱熹勸農文裡有提到【唯民生之本在食,足食本在農,是以國家務農重谷。。。衣食足而知榮辱,倉稟實而知禮節】簡單的解釋就是糧食是人民生活中最基本的需要,而要得到足夠的糧食有需細心耕作,一個國家的人民如果得不到溫飽,就不知什麼是廉恥,也不會懂得守禮節,就因此社會不安定,教育也不能成功被實行。在朱熹勸農文裡也有告訴農民要注意耕地的保水性能,耕作的時間次序,耕地的施肥,除草工作,水利灌溉的重要性。 在福建當地方官時,朱文公常向朝廷上書,建議在福建各地設立社倉以救災,濟貧,及扶農。當時的社倉所具備的功能包括作為預防災難的的防災倉,為農民提供收购及貨糧服务的農業銀行及穩定物價的貯備倉。【朱熹社倉法】有提到“余甚貴傷民,甚贱傷農,民傷則離散,農傷則國貧。”朱文公是主張通過調節市場的供求以取得合理的谷價以惠民惠農,這樣才不會使到家庭離散及國家貧困。
朱熹生在八百多年前的南宋時期,不過當時他所實行的【農業政策】還是可以被我們用來作為參考及研究。馬來西亞今天在發展農業時所面對的問題包括:耕地短缺,資金短缺,耕田管理不佳,人力不足,農村老化,谷價不合理。為解決這些問題農業部有為農民提供優良的稻種,肥料的補貼同時也有為農民提供技術辅导及經費代款。但是在防止農村老化方面我們就作的不足夠。為了維持農村活力我們也有需要在農民眾多的地方設立農業大學或農業學院為農民子女提供農耕工程,生物科技及農業管理課程,以鼓勵他們留在農村服務。
我的父親曾經告訴我,以前福建同安人非常崇拜敬南宋的朱熹。朱熹文公不但是世界聞名的理學家,在管理農業及控制物價方面所取得的成就,也給后世有很大的啟示。【朱熹勸農文】及【朱熹社倉法】是朱文公的其中兩大著作。在朱熹勸農文裡有提到【唯民生之本在食,足食本在農,是以國家務農重谷。。。衣食足而知榮辱,倉稟實而知禮節】簡單的解釋就是糧食是人民生活中最基本的需要,而要得到足夠的糧食有需細心耕作,一個國家的人民如果得不到溫飽,就不知什麼是廉恥,也不會懂得守禮節,就因此社會不安定,教育也不能成功被實行。在朱熹勸農文裡也有告訴農民要注意耕地的保水性能,耕作的時間次序,耕地的施肥,除草工作,水利灌溉的重要性。 在福建當地方官時,朱文公常向朝廷上書,建議在福建各地設立社倉以救災,濟貧,及扶農。當時的社倉所具備的功能包括作為預防災難的的防災倉,為農民提供收购及貨糧服务的農業銀行及穩定物價的貯備倉。【朱熹社倉法】有提到“余甚貴傷民,甚贱傷農,民傷則離散,農傷則國貧。”朱文公是主張通過調節市場的供求以取得合理的谷價以惠民惠農,這樣才不會使到家庭離散及國家貧困。
朱熹生在八百多年前的南宋時期,不過當時他所實行的【農業政策】還是可以被我們用來作為參考及研究。馬來西亞今天在發展農業時所面對的問題包括:耕地短缺,資金短缺,耕田管理不佳,人力不足,農村老化,谷價不合理。為解決這些問題農業部有為農民提供優良的稻種,肥料的補貼同時也有為農民提供技術辅导及經費代款。但是在防止農村老化方面我們就作的不足夠。為了維持農村活力我們也有需要在農民眾多的地方設立農業大學或農業學院為農民子女提供農耕工程,生物科技及農業管理課程,以鼓勵他們留在農村服務。
वेर्तिकल Farminghttp://en.wikipedia.org/wiki/Vertical_farming
Vertical farming is a proposal to conduct large-scale agriculture in urban high-rises or "farmscrapers".[1] Using recycled resources and greenhouse methods such as hydroponics, these buildings would produce fruit, vegetables, edible mushrooms and algae year-round. Their proponents argue that, by allowing traditional outdoor farms to revert to a natural state and reducing the energy costs needed to transport foods to consumers, vertical farms could significantly alleviate climate change produced by excess atmospheric carbon.
Dickson Despommier, a professor of environmental health sciences and microbiology at Columbia University in New York City, developed the idea of vertical farming in 1999 with graduate students in a medical ecology class.In an interview with Miller-McCune.com, Despommier described how vertical farms would function:
"Each floor will have its own watering and nutrient monitoring systems. There'll be sensors for every single plant that tracks how much and what kinds of nutrients the plant has absorbed. You'll even have systems to monitor plant diseases by employing DNA chip technologies that detect the presence of plant pathogens by simply sampling the air and using snippets from various viral and bacterial infections. It's very easy to do.
Moreover, a gas chromatograph will tell us when to pick the plant by analyzing which flavenoids the produce contains. These flavenoids are what gives the food the flavors you're so fond of, particularly for more aromatic produce like tomatoes and peppers. These are all right-off-the-shelf technologies. The ability to construct a vertical farm exists now. We don't have to make anything new.[2] "
Architectural designs have been produced by Chris Jacobs of United Future, Andrew Kranis at Columbia University and Gordon Graff [3][4][5] at the University of Waterloo.
Mass media attention began with an article by Lisa Chamberlain in New York magazine.[6] Since 2007, articles have appeared in The New York Times[7], U.S. News & World Report[8], Popular Science[9] and Maxim (magazine), among others, as well as radio and television features.
Contents [hide]
1 Economic analysis
2 Advantages
2.1 Continuous crop production
2.2 Protection from weather-related crop failures
2.3 Conservation of resources
2.4 Organic crops
2.5 Water recycling
2.6 Halting mass extinction
2.7 Impact on Human Health
2.8 Urban Growth
2.9 Energy production
3 Technologies & Devices
4 Plans
5 Criticisms
6 See also
7 Notes
8 External links
[edit] Economic analysis
The detailed analytical work needed to establish the feasibility of vertical farming has not yet been done. Nevertheless, Despommier has argued that the idea is plausible. He estimates that, using currently available technologies, one vertical farm occupying one square city block and rising 30 stories would feed 10,000 people.[10]In others sources he claims this number to be up to 50,000[11]. Because the stacked growing surfaces of a vertical farm would receive far less sunlight than the equivalent land area in a rural farm, the vertical farm would require a significant level of artificial lighting and heating to operate in all seasons. Proponents of vertical farming have yet to demonstrate that the cost of producing and transporting energy from renewable sources which are mainly located in rural areas to an urban vertical farm can compete with the energy costs of directly growing food under sunlight in rural areas and then transporting it to cities.
The economic and environmental benefits of vertical farming rest primarily on the concept of minimizing food miles, the distance that food travels from farm to consumer. However, a recent analysis suggests that transportation is only a minor contributor to the economic and environmental costs of supplying food to urban populations. The author of the report, University of Toronto professor Pierre Desrochers, concluded that "food miles are, at best, a marketing fad."[12]
[edit] Advantages
Several potential advantages of vertical farming have been discussed by Despommier.[10] Many of these benefits are obtained from scaling up hydroponic or aeroponic growing methods. Others relate to vertical farming building designs that would allow the use of renewable energy sources (wind and solar) and the recycling of materials of production such as water.
[edit] Continuous crop production
Unlike traditional farming, indoor farming can produce crops year-round. All-season farming multiplies the productivity of the farmed surface by a factor of 4 to 6 depending on the crop. With some crops, such as strawberries, the factor may be as high as 30.[13][14]
[edit] Protection from weather-related crop failures
Crops grown in traditional farming landscapes suffer from the sometimes extreme nature of geological and meteorological events such as earthquakes, monsoons, hailstorms, tornadoes, flooding, wildfires, and droughts.[10] Because it provides a controlled environment, the productivity of vertical farms would be independent of weather and protected from extreme weather events. Protection from extreme weather may become a crucial feature as climate change increases the occurrence of such events. Although the controlled environment of vertical farming negates most of these factors, earthquakes and tornadoes still pose threats to the proposed infrastructure.
[edit] Conservation of resources
Vertical farming could reduce the need for new farmland due to overpopulation, potentially saving many natural resources. Deforestation, desertification, and other consequences of agricultural encroachment on natural biomes could be avoided. Because vertical farming allows crops to be grown closer to consumers, it may substantially reduce the amount of fossil fuels currently used to transport and refrigerate farm produce. Producing food indoors reduces or eliminates conventional plowing, planting, and harvesting by farm machinery powered by fossil fuels. Burning less fossil fuel would reduce air pollution and the carbon dioxide emissions that cause climate change.
[edit] Organic crops
The controlled growing environment and recycling reduces the need for pesticides, herbicides, and fertilizers. Advocates claim that producing organic crops in vertical farms is practical and the most likely production and marketing strategy.
[edit] Water recycling
Because water recycling is more practical and economic in a controlled agricultural environment, vertical farming would use much less water than traditional farming. New York City dumps 1.4 billion gallons of “treated waste water” into its rivers daily. However, a system of water recycling is already in use in the Solaire building in Battery Park.[6] Vertical farming would convert black and gray water into potable water by collecting the water released into the air by evapotranspiration. Today, over 70% of the liquid fresh water on Earth is used for conventional agriculture. The agriculture often pollutes the water with fertilizers and pesticides. Vertical farms will use less water, and recycle it. The recycling condenses water transpired from the plants. This recycled water is pure, and can be used for crops or drinking.[15]
[edit] Halting mass extinction
Withdrawing human activity from large areas of the earth's land surface may be necessary to slow and eventually halt the current anthropogenic mass extinction of land animals. Because most of the earth's human-occupied land is used for agriculture, vertical farming may be the only way to restore enough land for animal habitat to prevent extinction while continuing to sustain large human populations.
Traditional agriculture is highly disruptive to wild animal populations that live in and around farmland and may become unethical when there is a viable alternative. One study showed that wood mouse populations dropped from 25 per hectare to 5 per hectare after harvest, estimating 10 animals killed per hectare each year with conventional farming.[16] In comparison, vertical farming would cause very little destruction of insects and other wildlife deaths.
[edit] Impact on Human Health
Traditional Farming is a hazardous occupation with particular risks that often take their toll on the health of human laborers. Such risks include: exposure to infectious diseases such as malaria and schistosomes, exposure to toxic chemicals commonly used as pesticides and fungicides, confrontations with dangerous wildlife such as poisonous snakes, and the severe injuries that can occur when using large industrial farming equipment. Whereas the traditional farming environment inevitably contains these risks (particularly in the farming practice known as “slash and burn”), vertical farming – because the environment is strictly controlled and predictable – eliminates them altogether.[10]
[edit] Urban Growth
Vertical Farming, used in conjunction with other technologies and socioeconomic practices, could allow cities to expand while remaining largely self sufficient. This would allow for large urban centers that could grow without destroying considerably larger areas of forest to provide food for their people.Moreover, the industry of vertical farming will provide employment to these expanding urban centers. This may help to displace the unemployment created by the dismantling of traditional farms, as more farm laborers move to cities in search of work.[10] Although, it is unlikely that traditional farms will become obsolete, as there are numerous crops that are not suited for vertical farming.
[edit] Energy production
Proponents claim that vertical farms could generate power. Methane digesters could be built on site to transform the organic waste generated at the farm into Biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity that can either be consumed at the farm or added to the grid. [17]
The claim that vertical farms could contribute surplus power to the electric grid assumes that most light used by the plants is obtained from sunlight. In high density vertical farming, use of sunlight is problematic because natural light could only nourish plants near the surface of the building. Plants in the interior would require artificial lighting. If artificial light is used for most lighting needs, the building would not be capable of net power gain because that would violate the law of conservation of energy.
[edit] Technologies & Devices
Vertical farming relies on the use of various physical methods to become effective. Combining these technologies and devices in an integrated whole is what a Vertical Farm consists of. Various types are proposed and under research. The most common technologies used are:
Solar greenhouse (technical) / Greenhouse
Aeroponics / Hydroponics
Composting
Grow light
Phytoremediation
Skyscraper
[edit] Plans
Professor Despommier argues that the technology to construct vertical farms currently exists. He also believes that the system can be profitable and effective, a claim evidenced by some preliminary research posted on the project's website. Developers and local governments in the following cities have expressed serious interest in establishing a vertical farm: Inchon (South Korea), Abu Dhabi (United Arab Emirates), and Dongtan (China).[18]
[edit] Criticisms
Critics have noted that the energy needed for artificial lighting and other vertical farming operations might outweigh the benefit of the building’s close proximity to the areas of consumption. Artificial lighting would be needed for crops growing in areas of the building not exposed to sunlight.[19] Bruce Bugbee, a crop physiologist at Utah State University, believes that the huge power demands of vertical farming would be too expensive and not-competitive with traditional farms using only free natural light. He notes that the levels of artificial light required by growing crops is approximately 100 times the amount used by people working in offices.
Dickson Despommier, a professor of environmental health sciences and microbiology at Columbia University in New York City, developed the idea of vertical farming in 1999 with graduate students in a medical ecology class.In an interview with Miller-McCune.com, Despommier described how vertical farms would function:
"Each floor will have its own watering and nutrient monitoring systems. There'll be sensors for every single plant that tracks how much and what kinds of nutrients the plant has absorbed. You'll even have systems to monitor plant diseases by employing DNA chip technologies that detect the presence of plant pathogens by simply sampling the air and using snippets from various viral and bacterial infections. It's very easy to do.
Moreover, a gas chromatograph will tell us when to pick the plant by analyzing which flavenoids the produce contains. These flavenoids are what gives the food the flavors you're so fond of, particularly for more aromatic produce like tomatoes and peppers. These are all right-off-the-shelf technologies. The ability to construct a vertical farm exists now. We don't have to make anything new.[2] "
Architectural designs have been produced by Chris Jacobs of United Future, Andrew Kranis at Columbia University and Gordon Graff [3][4][5] at the University of Waterloo.
Mass media attention began with an article by Lisa Chamberlain in New York magazine.[6] Since 2007, articles have appeared in The New York Times[7], U.S. News & World Report[8], Popular Science[9] and Maxim (magazine), among others, as well as radio and television features.
Contents [hide]
1 Economic analysis
2 Advantages
2.1 Continuous crop production
2.2 Protection from weather-related crop failures
2.3 Conservation of resources
2.4 Organic crops
2.5 Water recycling
2.6 Halting mass extinction
2.7 Impact on Human Health
2.8 Urban Growth
2.9 Energy production
3 Technologies & Devices
4 Plans
5 Criticisms
6 See also
7 Notes
8 External links
[edit] Economic analysis
The detailed analytical work needed to establish the feasibility of vertical farming has not yet been done. Nevertheless, Despommier has argued that the idea is plausible. He estimates that, using currently available technologies, one vertical farm occupying one square city block and rising 30 stories would feed 10,000 people.[10]In others sources he claims this number to be up to 50,000[11]. Because the stacked growing surfaces of a vertical farm would receive far less sunlight than the equivalent land area in a rural farm, the vertical farm would require a significant level of artificial lighting and heating to operate in all seasons. Proponents of vertical farming have yet to demonstrate that the cost of producing and transporting energy from renewable sources which are mainly located in rural areas to an urban vertical farm can compete with the energy costs of directly growing food under sunlight in rural areas and then transporting it to cities.
The economic and environmental benefits of vertical farming rest primarily on the concept of minimizing food miles, the distance that food travels from farm to consumer. However, a recent analysis suggests that transportation is only a minor contributor to the economic and environmental costs of supplying food to urban populations. The author of the report, University of Toronto professor Pierre Desrochers, concluded that "food miles are, at best, a marketing fad."[12]
[edit] Advantages
Several potential advantages of vertical farming have been discussed by Despommier.[10] Many of these benefits are obtained from scaling up hydroponic or aeroponic growing methods. Others relate to vertical farming building designs that would allow the use of renewable energy sources (wind and solar) and the recycling of materials of production such as water.
[edit] Continuous crop production
Unlike traditional farming, indoor farming can produce crops year-round. All-season farming multiplies the productivity of the farmed surface by a factor of 4 to 6 depending on the crop. With some crops, such as strawberries, the factor may be as high as 30.[13][14]
[edit] Protection from weather-related crop failures
Crops grown in traditional farming landscapes suffer from the sometimes extreme nature of geological and meteorological events such as earthquakes, monsoons, hailstorms, tornadoes, flooding, wildfires, and droughts.[10] Because it provides a controlled environment, the productivity of vertical farms would be independent of weather and protected from extreme weather events. Protection from extreme weather may become a crucial feature as climate change increases the occurrence of such events. Although the controlled environment of vertical farming negates most of these factors, earthquakes and tornadoes still pose threats to the proposed infrastructure.
[edit] Conservation of resources
Vertical farming could reduce the need for new farmland due to overpopulation, potentially saving many natural resources. Deforestation, desertification, and other consequences of agricultural encroachment on natural biomes could be avoided. Because vertical farming allows crops to be grown closer to consumers, it may substantially reduce the amount of fossil fuels currently used to transport and refrigerate farm produce. Producing food indoors reduces or eliminates conventional plowing, planting, and harvesting by farm machinery powered by fossil fuels. Burning less fossil fuel would reduce air pollution and the carbon dioxide emissions that cause climate change.
[edit] Organic crops
The controlled growing environment and recycling reduces the need for pesticides, herbicides, and fertilizers. Advocates claim that producing organic crops in vertical farms is practical and the most likely production and marketing strategy.
[edit] Water recycling
Because water recycling is more practical and economic in a controlled agricultural environment, vertical farming would use much less water than traditional farming. New York City dumps 1.4 billion gallons of “treated waste water” into its rivers daily. However, a system of water recycling is already in use in the Solaire building in Battery Park.[6] Vertical farming would convert black and gray water into potable water by collecting the water released into the air by evapotranspiration. Today, over 70% of the liquid fresh water on Earth is used for conventional agriculture. The agriculture often pollutes the water with fertilizers and pesticides. Vertical farms will use less water, and recycle it. The recycling condenses water transpired from the plants. This recycled water is pure, and can be used for crops or drinking.[15]
[edit] Halting mass extinction
Withdrawing human activity from large areas of the earth's land surface may be necessary to slow and eventually halt the current anthropogenic mass extinction of land animals. Because most of the earth's human-occupied land is used for agriculture, vertical farming may be the only way to restore enough land for animal habitat to prevent extinction while continuing to sustain large human populations.
Traditional agriculture is highly disruptive to wild animal populations that live in and around farmland and may become unethical when there is a viable alternative. One study showed that wood mouse populations dropped from 25 per hectare to 5 per hectare after harvest, estimating 10 animals killed per hectare each year with conventional farming.[16] In comparison, vertical farming would cause very little destruction of insects and other wildlife deaths.
[edit] Impact on Human Health
Traditional Farming is a hazardous occupation with particular risks that often take their toll on the health of human laborers. Such risks include: exposure to infectious diseases such as malaria and schistosomes, exposure to toxic chemicals commonly used as pesticides and fungicides, confrontations with dangerous wildlife such as poisonous snakes, and the severe injuries that can occur when using large industrial farming equipment. Whereas the traditional farming environment inevitably contains these risks (particularly in the farming practice known as “slash and burn”), vertical farming – because the environment is strictly controlled and predictable – eliminates them altogether.[10]
[edit] Urban Growth
Vertical Farming, used in conjunction with other technologies and socioeconomic practices, could allow cities to expand while remaining largely self sufficient. This would allow for large urban centers that could grow without destroying considerably larger areas of forest to provide food for their people.Moreover, the industry of vertical farming will provide employment to these expanding urban centers. This may help to displace the unemployment created by the dismantling of traditional farms, as more farm laborers move to cities in search of work.[10] Although, it is unlikely that traditional farms will become obsolete, as there are numerous crops that are not suited for vertical farming.
[edit] Energy production
Proponents claim that vertical farms could generate power. Methane digesters could be built on site to transform the organic waste generated at the farm into Biogas which is generally composed of 65% methane along with other gasses. This biogas could then be burned to generate electricity that can either be consumed at the farm or added to the grid. [17]
The claim that vertical farms could contribute surplus power to the electric grid assumes that most light used by the plants is obtained from sunlight. In high density vertical farming, use of sunlight is problematic because natural light could only nourish plants near the surface of the building. Plants in the interior would require artificial lighting. If artificial light is used for most lighting needs, the building would not be capable of net power gain because that would violate the law of conservation of energy.
[edit] Technologies & Devices
Vertical farming relies on the use of various physical methods to become effective. Combining these technologies and devices in an integrated whole is what a Vertical Farm consists of. Various types are proposed and under research. The most common technologies used are:
Solar greenhouse (technical) / Greenhouse
Aeroponics / Hydroponics
Composting
Grow light
Phytoremediation
Skyscraper
[edit] Plans
Professor Despommier argues that the technology to construct vertical farms currently exists. He also believes that the system can be profitable and effective, a claim evidenced by some preliminary research posted on the project's website. Developers and local governments in the following cities have expressed serious interest in establishing a vertical farm: Inchon (South Korea), Abu Dhabi (United Arab Emirates), and Dongtan (China).[18]
[edit] Criticisms
Critics have noted that the energy needed for artificial lighting and other vertical farming operations might outweigh the benefit of the building’s close proximity to the areas of consumption. Artificial lighting would be needed for crops growing in areas of the building not exposed to sunlight.[19] Bruce Bugbee, a crop physiologist at Utah State University, believes that the huge power demands of vertical farming would be too expensive and not-competitive with traditional farms using only free natural light. He notes that the levels of artificial light required by growing crops is approximately 100 times the amount used by people working in offices.
National Green Technology Policy लौन्चेद http://www.nst.com.my/Current_News/NST/articles/20090724122814/Article/index_html
2009/07/24
BANGI: The Government intends to establish a green technology council for high-level coordination among ministries, agencies, private sector and key stakeholders for effective implementation of green technology policies.
Prime Minister Datuk Seri Najib Tun Razak, who will chair the council, said the move was one of five strategic thrusts under the National Green Technology Policy.
He said the policy was predicated on four primary pillars of energy, environment, economy and social perspective.
"My deputy, Tan Sri Muhyiddin Yassin, would be my alternate and the ministry of energy, green technology and water will be the focal point to coordinate and facilitate the role of all stakeholders for the successful implementation of the Green Techology Roadmap," he said when launching the policy here today.
He said the second strategic thrust aimed to provide a conducive environment for Green Technology development.
Najib said this included the introduction and implementation of innovative economic instruments, as well as the establishment of effective fiscal and financial mechanisms to support the growth of green industries.
"We are planning for greater promotion of foreign direct investments (FDI) on green technology to foster domestic direct investments (DDIs) and local industry participation," added the prime minister.
He said, up till June this year, Malaysia had attracted almost RM12 billion in investments from the solar photovoltaics industry through FDIs, from top companies such as First Solar, Sun Power, Q-Cells and Tokuyama.
He said meanwhile, strategic thrust three would seek to intensify human capital development by availing training and education programmes, and by providing financial packages and incentives for students embarking on green technology-related subjects.
"We must ensure that we have skilled, qualified, competent and productive human resources as this is a crucial factor for Green Technology development," he said.
Najib said strategic thrust four was to intensify Green Technology research and innovation towards commercialisation, and the incentives would be offered and announced in due course.
He said the final thrust for green technology to move forward was based on strong promotion and public awareness since it was a new sector in the country.
He said the government would lead by example by adopting green technology in government facilities and promotion, education and information dissemination to create buy-in of the public to support the ''green economy'' and adopt ''green practices'', as part of their life would be done.
Najib also named Pusat Tenaga Malaysia's building as the Green Energy Office (GEO) which is the first Green Building Index (GBI) rated building in Malaysia.
Meanwhile, at the press conference, when asked whether the government would introduce benefits for corporations that adopt the green technology, he said the government had given double tax deduction for such companies.
"We are looking into it. We might consider some proposals in the near future.
"But obviously, we do need to look into it in greater depth first, before we decide what kind of incentives to offer," he said, indicating that the government was serious about this development and would like to see it happen.
Asked on incentives for consumers using solar energy, he said solar energy was quite expensive now but in a few years time, it would become very competitive, and the government would continue to support the development of solar energy in the country.
- Bernama
BANGI: The Government intends to establish a green technology council for high-level coordination among ministries, agencies, private sector and key stakeholders for effective implementation of green technology policies.
Prime Minister Datuk Seri Najib Tun Razak, who will chair the council, said the move was one of five strategic thrusts under the National Green Technology Policy.
He said the policy was predicated on four primary pillars of energy, environment, economy and social perspective.
"My deputy, Tan Sri Muhyiddin Yassin, would be my alternate and the ministry of energy, green technology and water will be the focal point to coordinate and facilitate the role of all stakeholders for the successful implementation of the Green Techology Roadmap," he said when launching the policy here today.
He said the second strategic thrust aimed to provide a conducive environment for Green Technology development.
Najib said this included the introduction and implementation of innovative economic instruments, as well as the establishment of effective fiscal and financial mechanisms to support the growth of green industries.
"We are planning for greater promotion of foreign direct investments (FDI) on green technology to foster domestic direct investments (DDIs) and local industry participation," added the prime minister.
He said, up till June this year, Malaysia had attracted almost RM12 billion in investments from the solar photovoltaics industry through FDIs, from top companies such as First Solar, Sun Power, Q-Cells and Tokuyama.
He said meanwhile, strategic thrust three would seek to intensify human capital development by availing training and education programmes, and by providing financial packages and incentives for students embarking on green technology-related subjects.
"We must ensure that we have skilled, qualified, competent and productive human resources as this is a crucial factor for Green Technology development," he said.
Najib said strategic thrust four was to intensify Green Technology research and innovation towards commercialisation, and the incentives would be offered and announced in due course.
He said the final thrust for green technology to move forward was based on strong promotion and public awareness since it was a new sector in the country.
He said the government would lead by example by adopting green technology in government facilities and promotion, education and information dissemination to create buy-in of the public to support the ''green economy'' and adopt ''green practices'', as part of their life would be done.
Najib also named Pusat Tenaga Malaysia's building as the Green Energy Office (GEO) which is the first Green Building Index (GBI) rated building in Malaysia.
Meanwhile, at the press conference, when asked whether the government would introduce benefits for corporations that adopt the green technology, he said the government had given double tax deduction for such companies.
"We are looking into it. We might consider some proposals in the near future.
"But obviously, we do need to look into it in greater depth first, before we decide what kind of incentives to offer," he said, indicating that the government was serious about this development and would like to see it happen.
Asked on incentives for consumers using solar energy, he said solar energy was quite expensive now but in a few years time, it would become very competitive, and the government would continue to support the development of solar energy in the country.
- Bernama
訂閱:
文章 (Atom)